On Graph Query Optimization in Large Networks

Peixiang Zhao, Jiawei Han

Department of Computer Science
University of Illinois at Urbana-Champaign

pzhao4@illinois.edu, hanj@cs.uiuc.edu

September 14th, 2010
1. Introduction
2. The Pattern-based Graph Indexing Framework
3. SPath: Graph Indexing on Large Networks
4. Graph Query Processing and Optimization
5. Experimental Evaluation
6. Conclusion
The burgeoning size and heterogeneity of networks call for effective **graph query processing** methods in a diverse range of applications:

1. Bioinformatics and Cheminformatics
2. Social Networks and Communication Networks
3. Software Systems

Graph Query

Given a network G and a query graph Q, the graph query problem is to find as output all distinct matchings of Q in G.

The graph query problem is **hard**

1. Subgraph isomorphism checking is proven to be NP-complete
2. The heterogeneity and sheer size of networks hinder a direct application of well-known graph matching methods
A Running Example

Figure: A Network G and a Query Graph Q
Motivation: Can we take advantage of well-studied database indexing and query optimization techniques to address the graph query problem on large networks?

SPath:
1. Indexes neighborhood signatures of vertices in the network, which maintains decomposed shortest path information within vertex vicinity
 1. Space-efficient
 2. Effective search space pruning ability
 3. High scalability in large networks
2. Boosts graph query processing from vertex-at-a-time to path-at-a-time
The Baseline Algorithm

Exploring a tree-structured search space by considering all possible vertex-to-vertex correspondences from Q to G

Matching Candidate

$\forall v \in V(Q)$, the matching candidates of v is a set $C(v)$ of vertices in G bearing the same vertex label with v, i.e.,

$$C(v) = \{ u | l(u) = l'(v), u \in V(G) \}$$

where l and l' are vertex labeling functions for G and Q, respectively.

- Total search space size: $\prod_{i=1}^{N} |C(v_i)|$
- Worst-case time complexity: $O(M^N)$ (M and N: the sizes of G and Q, respectively)
The Pattern Based Graph Indexing Framework

Objective: to reduce the search space size $\prod_{i=1}^{N} |C(v_i)|$

1 Minimize the number of one-on-one correspondence checkings, i.e., $\min N$;
 - **Vertex-at-a-time**: $N = |V(Q)|$
 - **Pattern-at-a-time**: $N = k$, if a set of structural patterns $p_1, p_2, \ldots, p_k \subseteq Q$ ($k < N$) is indexed

2 Minimize for each vertex in the graph query its matching candidates, i.e., $\min |C(v_i)|$
 - It is unnecessary to check every vertex in $C(v_i)$!
 - For $v_i \in V(Q)$, we consider a neighborhood induced subgraph of Q, $G^k_{v_i}$, which contains all vertices (and induced edges) within k hops away from v_i
The Pattern Based Graph Indexing Framework

Theorem

If $Q \subseteq G$ w.r.t. a subgraph isomorphism matching f, for any structural pattern $p \subseteq G_{v_i}^k$, $v_i \in V(Q)$, there must be a matching pattern, denoted as $f(p) \subseteq G$, s.t. $f(p) \subseteq G_{f(v_i)}^k$, $f(v_i) \in V(G)$. □

- If structural patterns in the k-neighborhood subgraphs are indexed in advance, false positives in $C(v_i)$ can be pre-pruned, such that $|C(v_i)|$ is reduced.

By extracting and indexing structural patterns within the k-neighborhood subgraphs, can we **achieve both objectives!**
Question

Among different kinds of structural patterns, which one (or ones) is most suitable for graph indexing on large networks?

The graph indexing cost, C, can be formulated as a combination of:

1. The pattern selection cost C_s in G
2. The pattern selection cost C_s in Q
3. The pattern pruning cost of Q

The Graph Indexing Cost

$$C = (|V(G)| \times n + |V(Q)| \times n') \times C_s + \frac{|V(Q)| \times |V(G)| \times n' \times C_p}{\Sigma}$$

n and n' are the number of structural patterns in the k-neighborhood subgraph of vertices in G and Q, respectively.
We evaluate three different patterns, i.e., paths, trees and graphs for indexing:

<table>
<thead>
<tr>
<th>Cost</th>
<th>(n(n'))</th>
<th>(C_s)</th>
<th>(C_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>exponential</td>
<td>linear time</td>
<td>linear time</td>
</tr>
<tr>
<td>Tree</td>
<td>exponential</td>
<td>linear time</td>
<td>polynomial time</td>
</tr>
<tr>
<td>Graph</td>
<td>exponential</td>
<td>linear time</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>

- **Paths** excel trees and graphs for indexing on large networks:
 1. **Shortest paths** are further selected and decomposed into a distance-wise structure, **SPath**, as a high-performance graph indexing mechanism on large networks.
 2. During graph query processing, decomposed shortest paths in SPath are reconstructed and joined for query optimization.
k-DISTANCE SET

Given \(u \in V(G) \), and a nonnegative distance \(k \), the \(k \)-distance set of \(u \), \(S_k(u) \), is defined as

\[
S_k(u) = \{ S^l_k(u) | l \in \Sigma \} \backslash \{ \emptyset \}
\]

NEIGHBORHOOD SIGNATURE

Given \(u \in V(G) \), and a nonnegative neighborhood scope \(k_0 \), the neighborhood signature of \(u \), denoted as \(NS(u) \), is defined as

\[
NS(u) = \{ S_k(u) | k \leq k_0 \}
\]

- All shortest path information in the \(k_0 \)-neighborhood subgraph \(G^k_{u_0} \) of \(u \) is (indirectly) encoded in the neighborhood signature, \(NS(u) \)
Example (Neighborhood Signature)

If the neighborhood scope k_0 is set 2, the neighborhood signature of $u_1 \in G$,

$$NS(u_1) = \{\{A : \{1\}\}, \{B : \{2\}, C : \{3\}\}, \{A : \{4, 6\}, B : \{5\}\}\};$$

The neighborhood signature of $v_1 \in Q$,

$$NS(v_1) = \{\{A : \{1\}\}, \{B : \{2\}, C : \{3\}\}, \{C : \{4\}\}\}.$$
NS CONTAINMENT

Given \(u \in V(G) \) and \(v \in V(Q) \), \(NS(v) \) is contained in \(NS(u) \), denoted as \(NS(v) \sqsubseteq NS(u) \), if \(\forall k \leq k_0, \forall l \in \Sigma, \)
\[
|\bigcup_{k \leq k_0} S_k^l(v)| \leq |\bigcup_{k \leq k_0} S_k^l(u)|
\]

Theorem

Given a network \(G \) and a graph query \(Q \), if \(Q \) is subgraph-isomorphic to \(G \) w.r.t. \(f \), i.e., \(Q \subseteq G \), then \(\forall v \in V(Q), NS(v) \sqsubseteq NS(f(v)) \), where \(f(v) \in V(G) \)

- if \(NS(v) \) is not contained in \(NS(u) \), \(u \) is a false positive and can be safely pruned from \(v \)'s matching candidates \(C(v) \). Therefore, the search space size \(|C(v)| \) is reduced
A Running Example

Figure: A Network G and a Graph Query Q

Example (NS Containment Pruning)

Based on NS pruning, the search space can be pruned for $C(v_1)$ from $\{u_1, u_4, u_6, u_8, u_{11}\}$ to $\{u_6, u_8, u_{11}\}$, for $C(v_2)$ from $\{u_2, u_5, u_{10}, u_{12}\}$ to $\{u_5\}$, for $C(v_3)$ from $\{u_3, u_7, u_9\}$ to $\{u_7\}$, and for $C(v_4)$ from $\{u_3, u_7, u_9\}$ to $\{u_7, u_9\}$. The total search space size has been reduced from 180 to 6.
SPath Implementation

- SPath, maintains the neighborhood signature for each vertex of the network G
 1. **Global Lookup Table** $\mathcal{H}: l^* \rightarrow \{u | l(u) = l^*\}$, $l^* \in \Sigma$
 - Given a vertex v in the query graph, its matching candidates $C(v) = \mathcal{H}(l(v))$;
 2. **Histogram**: $|S^l_k(u)|$ for $0 < k \leq k_0$ in the neighborhood signature
 3. **ID-List**: $S^l_k(u), u \in V(G)$

- Index construction cost:
 - **Time**: $O(|V(G)| \times |E(G)|)$
 - **Space**: $O(|V(G)| + |\Sigma| + k_0|\Sigma||V(G)|)$
A Running Example

Figure: A Network G and a Graph Query Q

<table>
<thead>
<tr>
<th>label</th>
<th>vid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 4 6 8 11</td>
</tr>
<tr>
<td>B</td>
<td>2 5 10 12</td>
</tr>
<tr>
<td>C</td>
<td>3 7 9</td>
</tr>
</tbody>
</table>

Histogram

<table>
<thead>
<tr>
<th>distance</th>
<th>label</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>2</td>
</tr>
</tbody>
</table>

ID-List

<table>
<thead>
<tr>
<th>vid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 6</td>
</tr>
<tr>
<td>2 5</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>7 9</td>
</tr>
</tbody>
</table>

Figure: The Global Lookup Table \mathcal{H} and the Histogram and ID-List of $NS(u_3)$, $u_3 \in V(G)$ ($k_0 = 2$)
Query Decomposition: To decompose the query graph Q into a set of indexed shortest paths.

Path Selection and Join: To choose an optimal set of paths to “recover” the query graph. For any edge $e \in E(Q)$, there should exist at least one selected shortest path p, such that $e \in p$. The set of shortest paths should be cost-effective and help reconstruct the query Q in an efficient way.

Path Instantiation: To instantiate the path for exact matching and cross-check the path join predicates.
We consider two objectives in the query plan optimizer for path selection and join:

1. To choose the smallest set of shortest paths which can cover the query.
 - Reduced to the NP-complete set-cover problem.

2. To choose shortest paths with good selectivity, such that the total search space can be minimized during real graph matching.

Selectivity of a path p

$$sel(p) = \frac{\psi(l)}{\prod_{v \in V(p)} |C'(v)|}$$

- A greedy approach to always picking the edge-disjoint path with highest selectivity first.
Experimental Evaluation

- SPath v.s. GraphQL [SIGMOD’08]
- One real data set (memory resident)
 - Yeast Protein Interaction Network
- A series of synthetic data set (disk resident)
 - G-MAT Synthetic Graph Generator
- Queries to be Examined
 1. Clique query
 2. Path query
 3. General subgraph query
Protein Interaction Network: Index Construction

- The yeast protein interaction network
 - 3,112 vertices
 - 12,519 edges
 - 183 GO terms as vertex labels

Figure: Index Construction Cost for SPath
Protein Interaction Network: Query Response Time

Figure: Query Response Time for Path Queries

Figure: Query Response Time for Clique Queries

Figure: Query Response Time for Subgraph Queries
A series of disk-resident synthetic graphs are generated based on R-MAT model, which follows power-law in- and out-degree distribution

- $|V(G)| = 500,000; 1,000,000; 1,500,000$ and $2,000,000$
- $|E(G)| = 5 \times |V(G)|$
- $|\Sigma| = 1\% \times |V(G)|$

Figure: Index Construction Cost for SPath
Figure: Query Response Time for Subgraph Queries in the Synthetic Graph
Conclusion

1. **Graph queries** are frequently issued on large networks
 - Existing data models, query languages and access methods no longer fit well in the large networks to support graph query processing effectively

2. **Graph indexing** plays a key role in facilitating graph query processing
 - Different structural patterns are evaluated based on a cost-sensitive model and shortest paths are chosen as good indexing features in large networks

3. **SPath**
 - Revolutionizes the way of graph query processing from *vertex-at-a-time* to *path-at-a-time*
 - Exhibits good scalability and satisfactory query performance
Thank you