
Hierarchical Metadata-Aware Document Categorization
under Weak Supervision

Yu Zhang1, Xiusi Chen2, Yu Meng1, Jiawei Han1
1Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

2Department of Computer Science, University of California, Los Angeles, CA, USA
1{yuz9, yumeng5, hanj}@illinois.edu, 2xchen@cs.ucla.edu

ABSTRACT

Categorizing documents into a given label hierarchy is intuitively
appealing due to the ubiquity of hierarchical topic structures in mas-
sive text corpora. Although related studies have achieved satisfying
performance in fully supervised hierarchical document classifica-
tion, they usually require massive human-annotated training data
and only utilize text information. However, in many domains, (1)
annotations are quite expensive where very few training samples
can be acquired; (2) documents are accompanied by metadata in-
formation. Hence, this paper studies how to integrate the label
hierarchy, metadata, and text signals for document categorization
under weak supervision. We develop HiMeCat, an embedding-
based generative framework for our task. Specifically, we propose
a novel joint representation learning module that allows simultane-
ous modeling of category dependencies, metadata information and
textual semantics, and we introduce a data augmentation module
that hierarchically synthesizes training documents to complement
the original, small-scale training set. Our experiments demonstrate
a consistent improvement of HiMeCat over competitive baselines
and validate the contribution of our representation learning and
data augmentation modules.
ACM Reference Format:

YuZhang1, Xiusi Chen2, YuMeng1, Jiawei Han1. 2021. HierarchicalMetadata-
Aware Document Categorization under Weak Supervision. In Proceedings
of the Fourteenth ACM International Conference on Web Search and Data
Mining (WSDM ’21), March 8–12, 2021, Virtual Event, Israel. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3437963.3441730

1 INTRODUCTION

Document categorization is an important task in text mining, with
many real applications such as sentiment analysis [39], location
prediction [4] and scientific paper tagging [21]. Given a large text
corpus, automatically inferring the category of each document not
only enables effective organization of the data, but also benefits
downstream tasks like document retrieval [47]. Hierarchical docu-
ment categorization [7, 12] further considers relationships among
categories and classifies documents into a given label hierarchy.
Leveraging such hierarchical structures is shown to be effective and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’21, March 8–12, 2021, Virtual Event, Israel
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00
https://doi.org/10.1145/3437963.3441730

… …

Label Hierarchy User (Metadata)
Description (Text)

Tags (Metadata)

README (Text)

(a) GitHub Repository. Label Hierarchy: PaperWithCode Task Taxonomy (https:
//paperswithcode.com/sota); Text: Description and README; Metadata: User and Tag.

Label Hierarchy

Title (Text) Authors (Metadata)

Abstract (Text)

(b) arXiv Paper. Label Hierarchy: arXiv Category Taxonomy (https://arxiv.org/
category_taxonomy); Text: Title and Abstract; Metadata: Author.

Label Hierarchy

Title (Text)

Review (Text)

User (Metadata)

Product (Metadata)

(c) Amazon Review. Label Hierarchy: Amazon Product Catalog [25]; Text: Title and
Review; Metadata: User and Product.

Figure 1: Three examples of documents with metadata and

corresponding label hierarchies.

necessary due to their pervasiveness in web directories1, business
category lists2 and many other domains (Figure 1).

Although recent studies on hierarchy-aware neural models [24,
44, 55] and pre-trained language models [5, 38] greatly improve
the performance of (hierarchical) text categorization, they are less
concerned with two challenges in real applications:
Limited Training Data. Neural classifiers are data hungry and re-
quire a significant amount of manually labeled training documents

1https://en.wikipedia.org/wiki/Yahoo!_Directory
2https://www.yelp.com/developers/documentation/v3/all_category_list

https://doi.org/10.1145/3437963.3441730
https://doi.org/10.1145/3437963.3441730
https://paperswithcode.com/sota
https://paperswithcode.com/sota
https://arxiv.org/category_taxonomy
https://arxiv.org/category_taxonomy
https://en.wikipedia.org/wiki/Yahoo!_Directory
https://www.yelp.com/developers/documentation/v3/all_category_list

to achieve good performance. In some scientific domains (e.g., arXiv
papers and GitHub repositories), to obtain a large training set is
expensive because annotations have to be acquired from domain
experts. In these scenarios, it would be favorable to perform classi-
fication without much annotation effort. To be specific, one may
only expect very few (e.g., 5) training examples for each category.
Heterogeneous Signals. Documents on the Web are often accom-
panied by metadata information. We raise three examples in Figure
1: each GitHub repository has its creator and several topic tags; each
arXiv paper has its author(s); each Amazon review is associated
with a user and a product. These signals, as potential category indi-
cators, should be considered together with the plain text sequence.
Moreover, the label hierarchy, which reflects category dependen-
cies and correlation, should also be viewed as one type of signal.
In recognition of these heterogeneous signals, how can we jointly
leverage them during category inference?

In this paper, to tackle the two challenges, we develop HiMe-
Cat, an embedding-based generative framework for Hierarchical
Metadata-aware document Categorization under weak supervi-
sion. HiMeCat features a hierarchical generative process in the
embedding space to simultaneously model (1) category dependencies
via a top-down generative assumption along the label hierarchy, (2)
metadata information via a joint generative assumption that docu-
ments are dependent on both their categories and metadata, and (3)
textual semantics via a document-word generative assumption. This
hierarchical generative process guides the two important steps of
our method: (1) representation learning: Maximizing the likelihood
of the hierarchical generative process yields an embedding learning
objective which jointly optimizes the representations of the label
hierarchy, metadata and texts to effectively exploit the heteroge-
neous signals; (2) data augmentation: Following the hierarchical
generative process allows us to synthesize training documents that
augment the original, small-scale training set, which overcomes
the limited training data challenge. Combining real and synthe-
sized training data, we train a neural classifier for hierarchical text
categorization by taking word representations learned from the
previous step as embedding initialization.

Inspired by related studies on spherical hierarchical clustering
[13] and spherical text embedding [29] which better capture di-
rectional similarities and outperform Euclidean space models, we
propose to define our hierarchical generative process in the spheri-
cal space, where conditional probabilities are described by the von
Mises-Fisher (vMF) distribution [8] and Riemannian optimization
[2] is adopted for embedding learning.

To summarize, our contributions are as follows:
• We explore the task of jointly leveraging limited supervision and
metadata information for hierarchical text classification.
• We develop HiMeCat with a representation learning module
and a data augmentation module guided by a novel hierarchical
generative process in the spherical space. Our representation
learning module jointly learns embeddings from heterogeneous
signals, and our data augmentation module synthesizes training
documents to address the supervision scarcity bottleneck.
• We conduct comprehensive experiments on three datasets from
different domains and observe a consistent improvement of HiMe-
Cat over competitive baselines. We also show that leveraging the
hierarchy, leveraging metadata, and generating training samples
are all beneficial to the categorization performance.

2 PRELIMINARIES

2.1 Problem Definition

The inputs of our hierarchical metadata-aware text categorization
task are a collection of documents D = {𝑑1, ..., 𝑑 |D |} and a label
hierarchy T . Each document 𝑑𝑖 ∈ D has both text and metadata
information. We explain these concepts one by one.
Text. In this paper, text refers to all free-text fields of a document.
For example, in Figure 1, a GitHub repository has its description
and README file as text information; an arXiv paper has its title
and abstract. To simplify our discussion, we concatenate all these
fields into one word sequence, denoted as𝑤1𝑤2 ...𝑤𝑛 .
Metadata. Each document can have multiple types of metadata
(e.g., an Amazon review has both user and product information).
Given a specific metadata type, there may be an arbitrary number
(could be zero) of metadata instances associated with a document
(e.g., a repository may have no tags, and a paper can have more
than one author). For a document 𝑑 , we represent its metadata as a
set of metadata instancesM𝑑 = {𝑚1, ...,𝑚 |M𝑑 |}.
Label Hierarchy. We assume the label hierarchy T has a tree
structure. Each node 𝑙 ∈ T represents a category. If, in some cases,
T is a directed acyclic graph (DAG), we follow [55] and convert T
to a tree by distinguishing each label node as a single-path node.

Formally, we define our task as follows:
Problem Definition. Given a collection of documents D and a
label hierarchy T , where each leaf category 𝑙 ∈ T is characterized
by a small set of training documents D𝑙 ⊂ D, the task is to assign
appropriate category labels to the remaining documentsD\(∪𝑙D𝑙).
The labels of each document should form a path in T .

2.2 The Von Mises-Fisher Distribution

The von Mises-Fisher (vMF) distribution [8, 26] will be extensively
used in our proposed framework. It defines a probability density
over a unit sphere and is parameterized by a mean direction vector
𝝁 and a concentration parameter ^. Formally, let S𝑝−1 = {𝒙 ∈ R𝑝 :
| |𝒙 | |2 = 1} denote the 𝑝-dimensional unit sphere. The probability
density function for 𝒙 ∈ S𝑝−1, | |𝝁 | |2 = 1, ^ > 0 is given by

𝑓vMF (𝒙 |𝝁, ^) = 𝑐𝑝 (^) exp(^ · cos(𝒙, 𝝁)). (1)
Here, the normalization constant 𝑐𝑝 (^) is

𝑐𝑝 (^) =
^𝑝/2−1

(2𝜋)𝑝/2𝐼𝑝/2−1 (^)
, (2)

where 𝐼𝑟 (·) represents the modified Bessel function of the first kind
at order 𝑟 [8, 26]. Intuitively, the vMF distribution is an analogue of
the Gaussian distribution on a sphere. The distribution concentrates
around the mean direction 𝝁, and is more concentrated if ^ is large.

3 MODEL

3.1 A Hierarchical Generative Process

Motivation. In recognition of various types of information (i.e., the
label hierarchy, weak supervision, metadata, and text), we propose a
probabilistic generative process to characterize these heterogeneous
signals. By adopting the vMF distribution, our generative process
is defined in a spherical space (i.e., S𝑝−1) instead of a Euclidean
one (i.e., R𝑝). The motivation of doing so is inspired by two lines
of related studies. First, the vMF distribution has demonstrated its

ROOT

CS
Math Physics

CV
IR NLP

Label Hierarchy

Kaiming He

Ross Girshick

Metadata

Doc 1

Word 1

Word 2

Word 3

Word 4

Text

(a) The Hierarchical Generative Process

ROOT

IR

CV

NLP
CS

Math

Physics

Kaiming He
Ross Girshick

Doc 1Word 1
Word 2

Word 3 Word 4

(b) The Joint Spherical Embedding Space

Figure 2: Illustration of the proposed hierarchical genera-

tive process and the joint hierarchy-metadata-text represen-

tation learning module guided by this process.

effectiveness in several tasks including hierarchical clustering [13]
and text sequence generation [19], which bears some similarities
with our hierarchical representation learning and data augmenta-
tion modules, respectively. Second, normalizing word embedding
vectors onto a sphere [20, 49] or directly training embeddings in
a spherical space [29] can better capture directional similarities,
which is proved to be beneficial to tasks like semantic similarity
search and document classification [29].

As shown in Figure 2(a), the process can be divided into the
following steps.
Parent Label→ Child Label. Given the label hierarchy T , the
semantics of each child category 𝑙𝑐 should largely depend on the
semantics of its parent category 𝑙𝑝 . In other words, if we use an em-
bedding vector to represent each category, the child embedding 𝒍𝑐
should be close to its parent embedding 𝒍𝑝 . Inspired by the softmax
function used in word embedding [32] and network embedding
[40], we define the generation probability as

𝑝 (𝑙𝑐 |𝑙𝑝) ∝ exp(𝒍𝑇𝑐 𝒍𝑝). (3)
Here, one needs to notice that 𝑝 (·|𝑙𝑝) describes a probability dis-
tribution of an embedding vector 𝒍𝑐 . Since 𝒍𝑐 can be any point in
a continuous embedding space, 𝑝 (·|𝑙𝑝) should also be a continuous
distribution. Therefore, we cannot fully borrow the softmax func-
tion which defines a discrete choice from finite candidates. Instead,
the vMF distribution introduced in Section 2.2 is a proper tool here.

Assume all category embedding vectors reside on a sphere S𝑝−1.
Recall Eq. (1). If we set ^ = 1, then

𝑓vMF (𝒙 |𝝁, 1) = 𝑐𝑝 (1) exp(cos(𝒙, 𝝁)) = 𝑐𝑝 (1) exp(𝒙𝑇 𝝁) . (4)
By comparing Eq. (4) with Eq. (3), we know that the vMF distribution
meets our requirement of the generation probability (because 𝑐𝑝 (1)
is a constant given the dimension 𝑝). Thus, we rewrite Eq. (3) as

𝑝 (𝑙𝑐 |𝑙𝑝) = 𝑓vMF (𝒍𝑐 |𝒍𝑝 , 1) = 𝑐𝑝 (1) exp(𝒍𝑇𝑐 𝒍𝑝), ∀𝒍𝑐 ∈ S𝑝−1 . (5)
Given the conditional probability, the category embedding can

be generated in a top-down manner: we first determine the embed-
ding of T ’s root, and then proceed to the next level to generate
embeddings of categories at that level. The embeddings of child la-
bels are supposed to be surrounding the embedding of their parent
label, and, according to the property of the vMF distribution, we
have E[𝒍𝑐 |𝒍𝑝] = 𝒍𝑝 . This process can be repeated until we reach the
leaf categories.

Label & Metadata→ Document. Our second step generates doc-
ument embeddings according to their metadata and label informa-
tion (if applicable). Consider how we humans write a document
given a topic category (or a tag/product). We need to first have a
general idea of the article, which can be represented as the doc-
ument embedding 𝒅. To impose the coherence between 𝒅 and its
category/metadata information, we assume

𝑝 (𝑑 |𝑙𝑑 ,M𝑑) ∝ exp(𝒅𝑇 𝒍𝑑) ·
∏

𝑚𝑑 ∈M𝑑

exp(𝒅𝑇𝒎𝑑), (6)

where 𝑙𝑑 is the category label of 𝑑 (here, we are referring to the
leaf label of 𝑑);𝑚𝑑 is a metadata instance of 𝑑 ; the corresponding
embedding variables are in bold. Following the derivation above, by
assuming all embedding vectors reside on a sphere, we can rewrite
Eq. (6) as

𝑝 (𝑑 |𝑙𝑑 ,M𝑑) ∝
∏

𝑧∈{𝑙𝑑 }∪M𝑑

𝑐𝑝 (1) exp(𝒅𝑇 𝒛)

=
∏

𝑧∈{𝑙𝑑 }∪M𝑑

𝑓vMF (𝒅 |𝒛, 1), ∀𝒅 ∈ S𝑝−1 .
(7)

One unique problem we need to address here is that label and meta-
data information can be missing. For example, due to supervision
scarcity, only a small proportion of documents in D have label
information. Besides, a GitHub repository may have no tags. In
general, suppose 𝑉 instances 𝑧1, ..., 𝑧𝑉 are missing in {𝑙𝑑 } ∪ M𝑑 .
In this case, we assume their embeddings 𝒛1, ..., 𝒛𝑉 can be any vec-
tor on the sphere with equal probability (i.e., 𝒛1, ..., 𝒛𝑉 ∼ 𝑈 (S𝑝−1)
i.i.d.). Let O𝑑 = {𝑙𝑑 }∪M𝑑\{𝑧1, ..., 𝑧𝑉 } be the remaining observable
instances. Therefore, Eq. (7) becomes

𝑝 (𝑑 |𝑙𝑑 ,M𝑑)

∝ E𝒛1,...,𝒛𝑉 ∼𝑈 (S𝑝−1)
[∏
𝑧∈{𝑙𝑑 }∪M𝑑

𝑐𝑝 (1) exp(𝒅𝑇 𝒛)
]

∝
∫
S𝑝−1

...

∫
S𝑝−1

(∏
𝑧∈{𝑙𝑑 }∪M𝑑

𝑐𝑝 (1) exp(𝒅𝑇 𝒛)
)
d𝒛1 ... d𝒛𝑉

=

𝑉∏
𝑖=1

(∫
S𝑝−1

𝑐𝑝 (1) exp(𝒅𝑇 𝒛𝑖) d𝒛𝑖
)
·
∏
𝑧∈O𝑑

𝑐𝑝 (1) exp(𝒅𝑇 𝒛)

=
∏
𝑧∈O𝑑

𝑐𝑝 (1) exp(𝒅𝑇 𝒛) =
∏
𝑧∈O𝑑

𝑓vMF (𝒅 |𝒛, 1).

(8)

The second-to-last step holds because
∫
S𝑝−1 𝑐𝑝 (1) exp(𝒅

𝑇 𝒛𝑖) d𝒛𝑖 ≡ 1
(i.e., the probability density function of a vMF distribution inte-
grates to 1 over the whole sphere). Eq. (8) tells us that, when some
label/metadata information is missing, we only need to consider the
remaining observable part (i.e., O𝑑) in the conditional probability.
Document→Word. Based on the document embedding 𝒅, a se-
quence of words𝑤1, ...,𝑤𝑛 is then generated to describe the overall
semantics of 𝑑 . Similar to Eqs. (3) and (6), we assume the probability
of word𝑤𝑖 appearing in document 𝑑 to be

𝑝 (𝑤𝑖 |𝑑) ∝ exp(𝒘𝑇𝑖 𝒅) . (9)
Again, we rewrite the probability using a vMF distribution:

𝑝 (𝑤𝑖 |𝑑) = 𝑓vMF (𝒘𝑖 |𝒅, 1) = 𝑐𝑝 (1) exp(𝒘𝑇𝑖 𝒅), ∀𝒘𝑖 ∈ S
𝑝−1 . (10)

Eqs. (5), (8) and (10) together fully specify our proposed hierar-
chical generative process.

3.2 Joint Representation Learning

Guided by the hierarchical generative process, we aim to jointly
learn the embeddings of all labels, metadata instances, documents
and words. Our learning objective can be divided into two parts:
one for modeling the label hierarchy information (corresponding to
the first step in our generative process), and the other for modeling
corpus statistics and metadata information (corresponding to the
second and third steps).
Objective for Label Hierarchy. Given a parent-child label pair
(𝑙𝑝 , 𝑙𝑐), our goal is to maximize the log-likelihood log 𝑝 (𝑙𝑐 |𝑙𝑝) dur-
ing embedding learning. Inspired by studies on knowledge graph
embedding [3, 42], we adopt the following margin-based ranking
objective:

min
(
0, log𝑝 (𝑙𝑐 |𝑙𝑝) − log𝑝 (𝑙 ′𝑐 |𝑙 ′𝑝) − 𝛾

)
, (11)

where 𝛾 > 0 is a margin hyperparameter and (𝑙 ′𝑝 , 𝑙 ′𝑐) is a negative
training sample. Given the positive pair (𝑙𝑝 , 𝑙𝑐), we generate the
negative pair by replacing the parent label with any other label
in T while keeping the child label. According to this corruption
strategy, our objective can be defined as

J𝐿 =
∑

𝑙𝑐 ∈T\{ROOT}

∑
𝑙 ′𝑝 ∈T\{𝑙𝑝 ,𝑙𝑐 }

min
(
0, log 𝑝 (𝑙𝑐 |𝑙𝑝)−log 𝑝 (𝑙𝑐 |𝑙 ′𝑝)−𝛾𝐿

)
.

(12)
Based on the definition of 𝑝 (𝑙𝑐 |𝑙𝑝) in Eq. (5), we have

log 𝑝 (𝑙𝑐 |𝑙𝑝) − log 𝑝 (𝑙𝑐 |𝑙 ′𝑝)

= log
(
𝑐𝑝 (1) exp(𝒍𝑇𝑐 𝒍𝑝)

)
− log

(
𝑐𝑝 (1) exp(𝒍𝑇𝑐 𝒍 ′𝑝)

)
= 𝒍𝑇𝑐 𝒍𝑝 − 𝒍𝑇𝑐 𝒍 ′𝑝 .

(13)

Therefore,

J𝐿 =
∑

𝑙𝑐 ∈T\{ROOT}

∑
𝑙 ′𝑝 ∈T\{𝑙𝑝 ,𝑙𝑐 }

min
(
0, 𝒍𝑇𝑐 𝒍𝑝 − 𝒍𝑇𝑐 𝒍 ′𝑝 − 𝛾𝐿

)
. (14)

Objective for Metadata and Corpus. Given the label and meta-
data information of a document 𝑑 , the log-likelihood of observing
the document and its word sequence is

log𝑝 (𝑑,𝑤1:𝑛 |𝑙𝑑 ,M𝑑) = log
(
𝑝 (𝑑 |𝑙𝑑 ,M𝑑)

𝑛∏
𝑖=1

𝑝 (𝑤𝑖 |𝑑)
)
. (15)

According to Eqs. (8) and (10), it can be written as∑
𝑧∈O𝑑

log 𝑓vMF (𝒅 |𝒛, 1) +
𝑛∑
𝑖=1

log 𝑓vMF (𝒘𝑖 |𝒅, 1) + const. (16)

Again, we adopt the margin-based ranking objective to push the
negative pairs distant enough from the positive pairs (𝑧, 𝑑) and
(𝑑,𝑤𝑖). Formally,

J𝑀𝐶 =
∑
𝑑∈D

∑
𝑑′∈D\{𝑑 }

(
∑
𝑧∈O𝑑

min
(
0, log 𝑓vMF (𝒅 |𝒛, 1) − log 𝑓vMF (𝒅 ′ |𝒛, 1) − 𝛾𝑀

)
+

𝑛∑
𝑖=1

min
(
0, log 𝑓vMF (𝒘𝑖 |𝒅, 1) − log 𝑓vMF (𝒘𝑖 |𝒅 ′, 1) − 𝛾𝐶

))
.

(17)

Following the derivation in Eq. (13), we have

J𝑀𝐶 =
∑
𝑑∈D

∑
𝑑′∈D\{𝑑 }

(∑
𝑧∈O𝑑

min
(
0, 𝒅𝑇 𝒛 − 𝒅 ′𝑇 𝒛 − 𝛾𝑀

)
+

𝑛∑
𝑖=1

min
(
0,𝒘𝑇𝑖 𝒅 −𝒘

𝑇
𝑖 𝒅
′ − 𝛾𝐶

))
.

(18)

To summarize, our joint representation learning step can be
formulated as the following optimization problem:

maxJ = J𝐿 + J𝑀𝐶 ,

s.t. | |𝜽 | |2 = 1, ∀\ ∈ T ∪M ∪ D ∪V .
(19)

Here,M is the set of metadata instances appearing in the dataset,
andV is the vocabulary (i.e., the set of words).
Optimization.Given the constraint that all embedding vectors live
on a sphere, directly performing stochastic gradient descent in the
Euclidean space is not an effective way to optimize the objective.
Instead, following recent studies on hyperbolic embedding [33,
34] and spherical embedding [29, 45], we apply the Riemannian
gradient method [2] to learn the embeddings.

According to [29], on a unit sphere, the relationship between the
Riemannian gradient ∇𝑅 and the Euclidean gradient ∇𝐸 is

∇𝑅J (𝜽) = (𝑰 − 𝜽𝜽𝑇)∇𝐸J (𝜽). (20)
Based on Eqs. (14) and (18), the Euclidean gradient of each embed-
ding vector is easy to compute. For example, given a parent-child
label pair (𝑙𝑝 , 𝑙𝑐), we have

∇𝐸J𝐿 (𝒍𝑐) =
∑

𝑙 ′𝑝 ∈T\{𝑙𝑝 ,𝑙𝑐 }
1(𝒍𝑇𝑐 𝒍𝑝 − 𝒍𝑇𝑐 𝒍 ′𝑝 < 𝛾𝐿) · (𝒍𝑝 − 𝒍 ′𝑝),

∇𝐸J𝐿 (𝒍𝑝) =
∑

𝑙 ′𝑝 ∈T\{𝑙𝑝 ,𝑙𝑐 }
1(𝒍𝑇𝑐 𝒍𝑝 − 𝒍𝑇𝑐 𝒍 ′𝑝 < 𝛾𝐿) · 𝒍𝑐 ,

∇𝐸J𝐿 (𝒍 ′𝑝) = 1(𝒍𝑇𝑐 𝒍𝑝 − 𝒍𝑇𝑐 𝒍 ′𝑝 < 𝛾𝐿) · (−𝒍𝑐), ∀𝒍 ′𝑝 ∈ T\{𝑙𝑝 , 𝑙𝑐 },

(21)

where 1(·) is the indicator function. Then, following Eq. (20), we can
obtain the Riemannian gradient ∇𝑅J (𝒍𝑐), ∇𝑅J (𝒍𝑝) and ∇𝑅J (𝒍 ′𝑝).
The gradient of other embedding vectors can be calculated in a
similar way. After knowing the Riemannian gradient, we update
the parameters in the following form [2, 29]:

𝜽𝑡+1 ←
𝜽𝑡 + 𝛼𝑡∇𝑅J (𝜽𝑡)
| |𝜽𝑡 + 𝛼𝑡∇𝑅J (𝜽𝑡) | |2

, (22)

where 𝛼𝑡 is the learning rate at step 𝑡 . Intuitively, this update can
be viewed as an addition along the Riemannian gradient direction
followed by a projection onto the unit sphere.

Since computing the gradient requires enumerating all labels
or documents, in our actual computation, we adopt the negative
sampling strategy [3, 32] to accelerate this process. To be specific,
for each positive pair (𝑙𝑝 , 𝑙𝑐), (𝑧, 𝑑) or (𝑑,𝑤𝑖), we sample 5 negative
pairs to estimate the gradient.

3.3 Hierarchical Data Augmentation

Now we proceed to tackle the limited training data challenge.
After representation learning, we have obtained the embedding
vectors of all observed labels, metadata instances, documents and
words. Using these embeddings, we can generate synthesized train-
ing documents for each category. Formally, given a category 𝑙 , we
aim to create a document setD∗

𝑙
to augment its original training set

Algorithm 1 Hierarchical Data Augmentation
1: Input: embedding vectors (𝒍, 𝒅,𝒘); # synthesized docs per category (𝛽)
2: Generate a bottom-up traverse order of T
3: for 𝑙 in the traverse order do
4: if 𝑙 is a leaf category then

5: D∗
𝑙
= ∅

6: for 𝑖 = 1 to 𝛽 do

7: Generate 𝒅∗ according to Eq. (24)
8: Generate 𝒘∗1𝒘

∗
2 ...𝒘

∗
𝑛 according to Eq. (25)

9: D∗
𝑙
= D∗

𝑙
∪ {𝑑∗ }

10: end for

11: else

12: for 𝑥 ∈ Child(𝑙) do
13: D∗

𝑥,𝑠𝑎𝑚𝑝𝑙𝑒
← sample 𝛽

|Child(𝑙) | docs from D
∗
𝑥

14: end for

15: D∗
𝑙
= ∪𝑥∈Child(𝑙)D∗𝑥,𝑠𝑎𝑚𝑝𝑙𝑒

16: end if

17: end for

18: Output: {D∗
𝑙
: 𝑙 ∈ T}

D𝑙 . To implement this idea, we seek guidance from our proposed
generative process once again.
Data Augmentation for a Leaf Category. Recall Figure 2(a). If 𝑙
is a leaf category, it will directly participate in the generation of
document embeddings according to Eq. (8). If we denote a synthe-
sized document as 𝑑∗ (to distinguish it from a “real” document 𝑑),
the generation probability will become

𝑝 (𝑑∗ |𝑙,M𝑑∗) ∝
∏

𝑧∈O𝑑∗
𝑓vMF (𝒅∗ |𝒛, ^) . (23)

Note that we do not have any metadata information of the syn-
thesized document. Therefore, the only observable variable here
in {𝑙} ∪ M𝑑∗ is the label 𝑙 . Also, it is not necessary to generate
documents associated with a certain metadata instance because our
goal is to predict the label, instead of the metadata information, of
a document. Substituting O𝑑∗ = {𝑙} into Eq. (23), we have

𝑝 (𝑑∗ |𝑙,M𝑑∗) = 𝑓vMF (𝒅∗ |𝒍, ^) . (24)
After getting the document embedding 𝒅∗, we continue our

generative process to create a sequence of words describing 𝑑∗.
In principle, we should follow Eq. (10) and sample words from
𝑓vMF (·|𝒅∗, 1). However, in practice, we expect that the generated
word embedding𝒘∗ can be mapped back to a concrete word that
has occurred in our vocabulary V . In [19], Kumar and Tsvetkov
propose a way that first samples an vector 𝒆 from a continuous
distribution, and then find the nearest neighbor of 𝒆 in the embed-
ding space among all 𝑤 ∈ V . In contrast, we directly require the
generated word to reside in the neighborhood of 𝒅∗ in our joint
embedding space. In this way, Eq. (10) degenerates to a discrete
softmax function:

𝑝 (𝑤∗ |𝑑∗) = 𝑓vMF (𝒘∗ |𝒅∗, 1)∑
𝑤∈V𝑁 (𝑑∗) 𝑓vMF (𝒘 |𝒅∗, 1)

=
exp(𝒘∗𝑇 𝒅∗)∑

𝑤∈V𝑁 (𝑑∗) exp(𝒘𝑇 𝒅∗)
,

(25)
where V𝑁 (𝑑) is the set of top-𝑁 nearest neighbors of 𝒅∗ in the
embedding space among all𝑤 ∈ V . Using Eq. (25) repeatedly, we
can obtain a sequence of words𝑤∗1𝑤

∗
2 ...𝑤

∗
𝑛 as the content of 𝑑∗.

Data Augmentation for a Non-Leaf Category. In our hierarchi-
cal generative process, a non-leaf label does not directly generate

documents. Instead, it determines the embeddings of its children,
and the child categories further determine its lower-level descen-
dants. Formally, given a non-leaf label 𝑙 , let T𝑙 ⊆ T be the subtree
with root 𝑙 and Leaf(T𝑙) be the leaf descendants of 𝑙 . Then,

𝑝 (D∗
𝑙
,T𝑙 |𝑙) = 𝑝 (T𝑙 |𝑙) ·

∏
𝑥 ∈Leaf(T𝑙)

𝑝 (D∗𝑥 |𝑥) . (26)

After the joint representation learning step, all label embeddings
have been fixed. Therefore, for any parent-child pair (𝑙𝑝 , 𝑙𝑐), the
probability 𝑝 (𝑙𝑐 |𝑙𝑝) = 𝑐𝑝 (1) exp(𝒍𝑇𝑐 𝒍𝑝) is fixed. Thus,

𝑝 (𝑇𝑙 |𝑙) = 𝑝 (Child(𝑙) |𝑙) ·
∏

𝑥 ∈Child(𝑙)
𝑝 (Child(𝑥) |𝑥) · ... = const.

(27)
Here, Child(𝑙) is the set of 𝑙 ’s children. Putting Eqs. (26) and (27)
together, we know that the generation of D∗

𝑙
solely depends on

Leaf(T𝑙) in the current data augmentation step. That being said,
for a leaf category 𝑥 ∈ Leaf(T𝑙), the documents D∗𝑥 sampled from
𝑝 (D∗𝑥 |𝑥) can also be viewed as the documents D∗

𝑙
sampled from

𝑝 (D∗
𝑙
,T𝑙 |𝑙). This is intuitive because training samples of a leaf

category are naturally training samples of its ancestor categories.
We have discussed how to generate synthesized documents for a
leaf category. Therefore, we can directly have

D∗
𝑙
= ∪𝑥 ∈Leaf(T𝑙)D

∗
𝑥 . (28)

If we adopt a bottom-up order to generate D∗
𝑙
, this can also be

written in a recursive way:
D∗

𝑙
= ∪𝑥 ∈Child(𝑙)D∗𝑥 . (29)

In practice, some non-leaf categories have more children than
their siblings have. Thus, if we directly apply Eq. (29), they will have
more synthesized training data. To avoid class imbalance, we fix
|D∗

𝑙
| = 𝛽 = const for any 𝑙 ∈ T . When applying Eq. (29), we sample
𝛽

|Child(𝑙) | documents from D∗𝑥 and put them into D∗
𝑙
. Algorithm 1

completely summarizes our data augmentation process.

3.4 Hierarchical Classifier Training

After hierarchical data augmentation, every (leaf or non-leaf) cat-
egory 𝑙 has a set of synthesized training documents D∗

𝑙
and a set

of real training data D𝑙 . (If 𝑙 is a non-leaf category, we follow the
idea of creating D∗

𝑙
and let D𝑙 = ∪𝑥 ∈Leaf(T𝑙)D𝑥 .) Each training

document 𝑑 ∈ D𝑙 ∪D∗𝑙 has a sequence of words, whose embedding
vectors are already learned in joint representation learning.

Now, based on the augmented training data, we need to train
a hierarchical text classifier. Hierarchical text classification has
been extensively studied for decades with many effective mod-
els proposed (see Section 5 for a detailed discussion). The main
goal of this paper is to tackle signal heterogeneity and supervision
scarcity instead of proposing a novel neural architecture for hier-
archical classification. Therefore, we simply adopt the top-down
training strategy [7, 18, 22] that classifies documents at the top
layer and then propagates the results to the next layer until the
leaves. For each non-leaf category 𝑙 ∈ T , we need to train a flat
classifier that assigns documents to its child classes Child(𝑙) for
more fine-grained predictions. We adopt Kim-CNN [17], a popular
convolutional architecture, as our flat text classifier. The embed-
dings {𝒘 : 𝑤 ∈ V} trained in the joint representation learning step
are used as initialization embeddings of the input layer.

Table 1: Dataset Statistics.

Dataset #Docs #Classes #Leaves #Training #Testing
GitHub 1,596 18 14 70 1,526
ArXiv 26,400 94 88 440 25,960
Amazon 147,000 166 147 735 146,265

Themodel adopted here can be easily improved by replacing Kim-
CNNwith a more advanced flat classifier (e.g., [41, 51]) or by adding
a hierarchical regularization (e.g., [12, 14, 35]). However, since we
would like to demonstrate the contribution of our embedding and
augmentation modules when comparing with baselines, we keep
the classifier as simple as possible.

4 EXPERIMENTS

4.1 Experimental Setup

Datasets. We use three datasets from different domains.3 The sta-
tistics of the datasets can be found in Table 1.
• GitHub [54]. This dataset is collected by paperswithcode.com.
It contains 1,596 GitHub repositories implementing state-of-the-
art machine learning algorithms for different tasks (e.g., object
detection, question answering, speech synthesis, etc.). The tasks
form a taxonomy which is viewed as the label hierarchy.
• ArXiv. This dataset is crawled from arXiv.org. There are 5 level-1
categories (i.e., cs, math, physics, q-bio, and q-fin) and 88 level-2
categories. For each category, we randomly sample 300 papers
to constitute the dataset.
• Amazon [27]. This dataset is a large collection of Amazon prod-
uct reviews. The label of each review is its product category (e.g.,
automotive, car care, beauty, skin care, etc.). These categories are
organized into a catalog taxonomy [25]. We select 147 large leaf
categories and sample 1,000 reviews for each of them.

According to our weakly supervised setting, we use 5 documents per
leaf category for training and all the other documents for testing.
Baseline Methods. We evaluate the performance of HiMeCat
against the following classification/embedding algorithms:
• HierSVM [7] is a supervised hierarchical classification method.
It adopts a top-down classification strategy and trains an SVM
for each non-leaf node to distinguish its child categories.
• WeSHClass [30] is a weakly supervised hierarchical classifica-
tion method. It adopts LSTM to generate data for pre-training
and iteratively refines results based on the hierarchy.
• PCEM [48] is a weakly supervised hierarchical classification
method. It proposes a path-cost sensitive hierarchical classifier
and applies an EM technique to utilize the unlabeled data.
• HiGitClass [54] is a weakly supervised hierarchical classifi-
cation method. It uses heterogeneous network embedding to
encode relationships between labels, text and metadata and then
leverages WeSHClass to train a hierarchical classifier.
• MetaCat [52] is a weakly supervised flat classification method.
It leverages metadata information but cannot utilize the label
hierarchy. We use it to directly classify documents to the leaf
layer and then infer higher-level labels using the hierarchy.
• Metapath2vec [6] is a metadata-aware embedding method. It
models the proximity between heterogeneous elements through
meta-path guided random walks.

3Our code and datasets are available at
https://github.com/yuzhimanhua/HIMECat.

• Poincaré [33] is a hierarchy-aware embedding method. It pre-
serves the tree structure of embedded elements by putting them
into a hyperbolic space.
• Pretrained BERT [5] is a benchmark language model that pro-
vides contextualized word representations. For text classification,
following [5], we add a classification layer upon the [CLS] token
of the last transformer layer and fine-tune themodel using labeled
documents. After predicting the leaf category of a document, we
infer its higher-level labels using the hierarchy.
For Metapath2vec and Poincaré, inspired by our hierarchical

generative process, we construct a graph with edges (𝑙𝑝 , 𝑙𝑐), (𝑙, 𝑑),
(𝑚,𝑑) and (𝑑,𝑤) and perform node embedding on the graph. (We
use four meta-paths 𝑙-𝑙 , 𝑑-𝑙-𝑑 , 𝑑-𝑚-𝑑 and 𝑑-𝑤-𝑑 for Metapath2vec.)
Then, to apply these two baselines inweakly supervised hierarchical
classification, we use the learned embeddings to train a WeSHClass
classifier (by replacing its word2vec embedding module). Since
some baselines only utilize text information, for each document,
we append its metadata instances to the end of its text sequence so
that they can exploit these signals.
Parameters. Embedding dimension 𝑝 = 100 for all compared meth-
ods except BERT (whose base model is 768-dimensional). Margin
hyperparameter 𝛾𝐿 = 𝛾𝑀 = 𝛾𝐶 = 0.2. Document-specific vocabu-
lary size 𝑁 = 50. Number of synthesized documents per category
𝛽 = 500. For the Kim-CNN classifier, we use one convolutional
layer whose filter widths are 2, 3, 4, 5 with 20 feature maps each.
Evaluation Metrics. We use Micro and Macro F1 scores as eval-
uation metrics. Denote 𝑇𝑃𝑙 , 𝐹𝑃𝑙 and, 𝐹𝑁𝑙 as the instance num-
bers of true positive, false positive and false negative for a cat-
egory 𝑙 ∈ T . The Leaf Micro F1 is defined as 2𝑃𝑅

𝑃+𝑅 , where 𝑃 =∑
𝑙∈Leaf(T) 𝑇𝑃𝑙∑

𝑙∈Leaf(T) (𝑇𝑃𝑙+𝐹𝑃𝑙)
and 𝑅 =

∑
𝑙∈Leaf(T) 𝑇𝑃𝑙∑

𝑙∈Leaf(T) (𝑇𝑃𝑙+𝐹𝑁𝑙) . The Leaf Macro

F1 is defined as 1
|Leaf(T) |

∑
𝑙 ∈Leaf(T)

2𝑃𝑙𝑅𝑙
𝑃𝑙+𝑅𝑙 , where 𝑃𝑙 =

𝑇𝑃𝑙
𝑇𝑃𝑙+𝐹𝑃𝑙

and 𝑅𝑙 =
𝑇𝑃𝑙

𝑇𝑃𝑙+𝐹𝑁𝑙
. Following previous works [30, 48], we also cal-

culate the Overall Micro/Macro F1, which is defined accordingly
on T\{ROOT} instead of Leaf(T).

4.2 Performance Comparison

Table 2 shows the categorization performance of compared algo-
rithms on the three datasets. We repeat each experiment five times
and report the average F1 scores. To measure statistical significance,
we conduct a two-tailed paired t-test to compare HiMeCat and
each baseline approach. The significance level (“p-value < 0.01” or
“p-value < 0.05”) of each result is also marked in Table 2.

We observe that: (1)HiMeCat consistently outperforms the com-
pared baseline methods on all three datasets. In most cases, the
performance gap is statistically significant. The improvement of
HiMeCat over the best baseline is 8.3%, 13.0% and 47.5% on GitHub,
ArXiv and Amazon, respectively. (2) For the three metadata-aware
text categorization methods, HiMeCat performs better than HiGit-
Class and MetaCat, indicating the importance of considering label
hierarchy and incorporating it into representation learning. (3) Al-
though Metapath2vec and Poincaré are assumed to be strong tools
for metadata and hierarchy embedding respectively, they do not
achieve competitive performance when we need to jointly embed
these signals. This observation also emphasizes the contribution
of our joint representation learning module. (4) Despite the great
success of BERT in many supervised NLP tasks, it does not perform

https://github.com/yuzhimanhua/HIMECat

Table 2: {Leaf, Overall}×{Micro, Macro} F1 scores of compared algorithms on the three datasets. *: significantly worse than

HiMeCat (p-value < 0.05). **: significantly worse than HiMeCat (p-value < 0.01).
GitHub ArXiv Amazon

Leaf Overall Leaf Overall Leaf Overall
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

HierSVM [7] 0.1861** 0.1388** 0.4862** 0.2457** 0.0538** 0.0460** 0.4066** 0.0750** 0.0248** 0.0217** 0.2218** 0.0494**
WeSHClass [30] 0.1727** 0.1559** 0.3332** 0.1924** 0.0604** 0.0602** 0.3077** 0.0797** 0.0483** 0.0500** 0.1234** 0.0640**

PCEM [48] 0.2519** 0.1234** 0.5299* 0.1786** 0.1090** 0.0717** 0.4440 0.0963** 0.0675** 0.0439** 0.2189** 0.0659**
HiGitClass [54] 0.3984 0.3902* 0.5073** 0.4084** 0.1738** 0.1656** 0.3928** 0.1880** 0.0903** 0.0876** 0.1677** 0.1040**
MetaCat [52] 0.3762** 0.3403** 0.5411* 0.3863** 0.0790** 0.0768** 0.3071** 0.0935** 0.1008** 0.0994** 0.1703** 0.1083**

Metapath2vec [6] 0.2814** 0.2805** 0.4592** 0.3212** 0.1360** 0.1344** 0.3419** 0.1534** 0.0669** 0.0666** 0.1334** 0.0800**
Poincaré [33] 0.2750** 0.1980** 0.4302** 0.2218** 0.1336** 0.1296** 0.2995** 0.1454** 0.0645** 0.0607** 0.1202** 0.0739**
BERT [5] 0.2889** 0.2561** 0.4675** 0.3007** 0.1316** 0.0812** 0.4203** 0.1100** 0.0891** 0.0520** 0.2361** 0.0771**
HiMeCat 0.4254 0.4209 0.5820 0.4535 0.2038 0.1938 0.4509 0.2191 0.1552 0.1553 0.2748 0.1770

Table 3: Ablation analysis of the joint embeddingmodule. –: the dataset

does not have such metadata. * and **: the same as Table 2.

GitHub, Overall ArXiv, Overall Amazon, Overall
Micro Macro Micro Macro Micro Macro

HiMeCat 0.5820 0.4535 0.4509 0.2191 0.2748 0.1770

No-Hierarchy 0.5649* 0.4385 0.4353* 0.2007* 0.2640** 0.1658**
No-Metadata 0.5262** 0.3949** 0.4208** 0.1951** 0.2196** 0.1117**

No-User/Author 0.5626* 0.4238** 0.4208** 0.1951** 0.2578** 0.1520**
No-Tag 0.5649* 0.4263** – – – –

No-Product – – – – 0.2304** 0.1134**

0

10

20

30

40

50

60

0 100 200 300

O
ve

ra
ll

M
ic

ro
 F

1

Embedding Dimension

GitHub
ArXiv
Amazon

(a) Overall Micro F1

0

10

20

30

40

50

0 100 200 300

O
ve

ra
ll

M
ac

ro
 F

1

Embedding Dimension

GitHub
ArXiv
Amazon

(b) Overall Macro F1

Figure 3: Performance of HiMeCat with different

embedding dimensions (𝑝).

well in our problem settings. There may be two possible reasons.
First, directly using BERT for text classification does not consider
metadata and hierarchy information. Second, the small set of train-
ing data may not be enough to fine-tune BERT.

4.3 Ablation Study of Representation Learning

Two key steps, representation learning and data augmentation,
are proposed in our HiMeCat framework. Now we validate their
contribution to the categorization performance through ablation
analysis. We start from the representation learning module.
Hierarchy and Metadata. In our joint hierarchy-metadata-text
representation learning module, to check whether the label hi-
erarchy and various types of metadata are useful, we create the
following ablation versions of HiMeCat.
• No-Hierarchy does not consider parent-child relationships in
representation learning. Formally, it ignores J𝐿 in Eq. (19) and
only maximizes J𝑀𝐶 .
• No-Metadata does not consider metadata-document relation-
ships in representation learning. Formally, in Eq. (18), we will
have O𝑑 = {𝑙𝑑 } if 𝑑 is a training document and O𝑑 = ∅ otherwise.
Moreover, instead of ignoring all metadata instances, we can
overlook one specific type of metadata. This will yield ablations
including No-User/Author, No-Tag and No-Product.
Table 3 depicts the comparison between the fullHiMeCatmodel

and its ablations on the three datasets. (Due to space limitations,
we only show Overall F1 scores. Similar observations can be drawn
from Leaf F1 scores.) We find that: (1) The full model outperforms
No-Hierarchy, which validates our claim that modeling label depen-
dencies and correlation is beneficial to hierarchical categorization.
Moreover, when the dataset has a larger label hierarchy, the gap be-
tween HiMeCat and No-Hierarchy is more statistically significant.
The average improvement of HiMeCat over No-Hierarchy on the

0

10

20

30

40

50

60

0 500 1000 1500 2000

O
ve

ra
ll

M
ic

ro
 F

1

#synthesized training samples per class

GitHub
ArXiv
Amazon

(a) Overall Micro F1

0

10

20

30

40

50

0 500 1000 1500 2000

O
ve

ra
ll

M
ac

ro
 F

1

#synthesized training samples per class

GitHub
ArXiv
Amazon

(b) Overall Macro F1

Figure 4: Performance of HiMeCat with different numbers

of synthesized training samples per class (𝛽).

six metrics is 5.0%. (2) The full model outperforms No-Metadata,
which validates our claim that incorporating metadata signals is
helpful. When studying different types of metadata separately, we
find all of them play a positive role on our datasets. The contri-
bution of metadata is larger than that of label hierarchy, possibly
because metadata information is denser than hierarchy information.
That being said, each document has its own metadata, while the
whole corpus only has one label hierarchy.
Dimension. The embedding dimension 𝑝 is an important parame-
ter of the representation learning module. To check the sensitivity
of 𝑝 , we plot Overall F1 scores of HiMeCatwith 𝑝 = 10, 50, 100, 200
and 300 in Figure 3. We can observe that: if 𝑝 is too small, the em-
bedding vectors cannot sufficiently capture heterogeneous signals
in the dataset; if 𝑝 is too large, we may face overfitting problems,
especially under weak supervision. According to the results, setting
𝑝 between 100 and 200 is reasonable on our datasets.

4.4 Ablation Study of Data Augmentation

Now we proceed to the hierarchical data augmentation module.
We need to answer two questions here: (1) Can data augmentation
mitigate the label scarcity problem? (2) How many synthesized

2000 1500 1000 500 0 500 1000 1500 2000

1000

500

0

500

1000

1500

ROOT

Computer-Vision

Natural-Language-
Processing

Speech

(a) GitHub
150 100 50 0 50 100 150

150

100

50

0

50

100

150

200

math

cs

physics

q-bio

q-fin

ROOT

(b) ArXiv

Figure 5: Tree Embedding Visualization.

training samples should we create for each category? To investigate
these two questions, we show the performance of HiMeCat with
𝛽 = 0, 50, 100, 500, 1000 and 2000 in Figure 4.

We observe that, when comparing 𝛽 = 500 with 𝛽 = 0 (i.e.,
we do not generate any synthesized training data and use real
training data only), the performance boost is quite evident. For
example, the average absolute improvement of Overall F1 scores
on the three datasets is 21.4%. Thus, we validate our claim that
the hierarchical data augmentation module can help improve the
classification accuracy under weak supervision. Meanwhile, the
performance gap between 𝛽 = 2000 with 𝛽 = 500 is quite subtle.
In fact, the average absolute gap of Overall F1 scores on the three
datasets becomes 0.1%. Also, too many synthesized training samples
will make the training process inefficient. Seeking a balance, we
believe setting 𝛽 = 500 is an appropriate choice (and we do set
𝛽 = 500 in previous experiments).

4.5 Visualization of Tree Embedding

In order to show how the label hierarchy is modeled and how the
labels are distributed in our joint embedding space, we plot label
embeddings in Figure 5 after reducing their dimensions using t-SNE
[23]. Labels are denoted as stars, and names of all level-1 categories
and the root are shown. We have two observations: (1) The tree
structure of the label hierarchy is well preserved in our embedding
space. Child categories center around their parent categories. (2)
In the ArXiv embedding space, “q-fin” (Quantitative Finance) is
embedded near the root, and its children are embedded closer to
“math” and “physics” than they are to “cs” and “q-bio” (Quantitative
Biology). This is reasonable because quantitative finance is a quite
interdisciplinary area and has many overlap with mathematics
and physics. This observation shows that our joint representation
learning module not only considers the label hierarchy but also
captures semantics from text and/or metadata information.

5 RELATEDWORK

Hierarchical Text Classification. Many efforts have been put
on how to utilizing the label hierarchy to improve text classifica-
tion. For example, Dumais and Chen [7] and Liu et al. [22] adopt
a top-down training strategy and use SVMs to distinguish child
categories of the same parent. In contrast, bottom-up classification
[1] backpropagates the labels from the leaves to the top layer. Gopal
and Yang [12, 14] propose a recursive regularization framework
encouraging the similarity between the child classifiers and the
parent classifier. Peng et al. [35] extend this regularization to deep

graph-CNN models. Wehrmann et al. [44] and Huang et al. [15]
combine the ideas of training a local classifier per level and opti-
mizing the global classification results to mitigate exposure bias.
The global structure of hierarchies is also used in many other mod-
els, such as meta-learning [46], reinforcement learning [24] and
tree/graph based neural networks [55]. However, these fully super-
vised methods rely heavily on the amount of human-labeled train-
ing data. Under weakly supervised settings, hierarchical dataless
classification [36] jointly embeds class labels and documents using
Explicit Semantic Analysis; WeSHClass [30] models topic seman-
tics in the word2vec embedding space and applies a self-training
scheme; PCEM [48] introduces a path-cost sensitive classifier for
semi-supervised hierarchical classification; HierCon [21] projects
documents and taxonomy categories into a common concept space
and calculates their fine-grained similarity. However, these studies
are not concerned with metadata information.
Metadata-Aware Text Classification. Several previous studies
try to incorporate metadata information into a text classifier. For
example, Ghani et al. [11] use HTML meta tags to help hypertext
classification; Steyvers et al. [37] leverage author information in
topic classification; Tang et al. [39] learn user and product repre-
sentations for sentiment analysis; Zhang et al. [53] employ user
biography data for tweet localization. Chen et al. [4] encode user
mobility data and social network information for joint time and
location prediction; Kim et al. [16] propose a general framework to
inject categorical metadata signal into a deep text classifier. How-
ever, these models assume a fully supervised setting. Zhang et
al. [54] present a weakly supervised hierarchical classification ap-
proach to classify GitHub repositories. Later, they also propose a flat
metadata-aware text categorization framework [52]. Mekala et al.
[28] explore to incorporate metadata as additional supervision for
text classification with seed words only. However, in these studies,
the label hierarchy is not leveraged in the embedding space.
Tree andMetadata Embedding.Recent studies on non-Euclidean
embedding models, such as Poincaré [33], Lorentz [34], hyperbolic
cones [10] and spherical tree embedding [31], consider to preserve
a tree structure in the embedding space. Along another line of
work, heterogeneous network embedding algorithms [6, 9, 50] are
widely used to learn representations of metadata. HHNE [43] fur-
ther considers to perform heterogeneous network embedding in
a hyperbolic space. Despite their respective success in capturing
hierarchy and metadata information, to the best of our knowledge,
there lacks a framework which allows simultaneous modeling of
tree-structure dependencies, text semantics and metadata signals.

6 CONCLUSIONS

We present HiMeCat, an embedding-based generative framework
for hierarchical metadata-aware document categorization under
weak supervision. The framework is featured by a joint hierarchy-
metadata-text representation learning module and a hierarchical
data augmentation module. We propose a generative process in
the spherical space to guide the design of both modules. Through
experiments on three datasets from different domains, we show the
superiority of HiMeCat towards competitive baselines in our task.
We also conduct ablation studies to validate the contribution of our
proposed embedding and augmentation modules. Interesting future
work include: (1) discovering new categories from the unlabeled
dataset and put them into the existing hierarchy and (2) integrating

different forms of weak supervision (e.g., annotated documents and
class-related keywords) in hierarchical text classification.

ACKNOWLEDGMENTS

Research was sponsored in part by US DARPA KAIROS Program
No. FA8750-19-2-1004 and SocialSim Program No. W911NF-17-C-
0099, National Science Foundation IIS-19-56151, IIS-17-41317, IIS 17-
04532, and IIS 16-18481, and DTRA HDTRA11810026. Any opinions,
findings, and conclusions or recommendations expressed herein are
those of the authors and should not be interpreted as necessarily rep-
resenting the views, either expressed or implied, of DARPA or the
U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for government purposes notwithstanding
any copyright annotation hereon.

REFERENCES

[1] Paul N Bennett and Nam Nguyen. 2009. Refined experts: improving classification
in large taxonomies. In SIGIR’09. 11–18.

[2] Silvere Bonnabel. 2013. Stochastic gradient descent on Riemannian manifolds.
IEEE Trans. Automat. Control 58, 9 (2013), 2217–2229.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In NIPS’13. 2787–2795.

[4] Yile Chen, Cheng Long, Gao Cong, and Chenliang Li. 2020. Context-aware deep
model for joint mobility and time prediction. In WSDM’20. 106–114.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT’19. 4171–4186.

[6] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In KDD’17. 135–
144.

[7] Susan Dumais and Hao Chen. 2000. Hierarchical classification of web content.
In SIGIR’00. 256–263.

[8] Ronald Aylmer Fisher. 1953. Dispersion on a sphere. Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences 217, 1130 (1953),
295–305.

[9] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. Hin2vec: Explore meta-paths
in heterogeneous information networks for representation learning. In CIKM’17.
1797–1806.

[10] Octavian Ganea, Gary Becigneul, and Thomas Hofmann. 2018. Hyperbolic
Entailment Cones for Learning Hierarchical Embeddings. In ICML’18. 1646–1655.

[11] Rayid Ghani, Seán Slattery, and Yiming Yang. 2001. Hypertext categorization
using hyperlink patterns and meta data. In ICML’01. 178–185.

[12] Siddharth Gopal and Yiming Yang. 2013. Recursive regularization for large-scale
classification with hierarchical and graphical dependencies. In KDD’13. 257–265.

[13] Siddharth Gopal and Yiming Yang. 2014. Von mises-fisher clustering models. In
ICML’14. 154–162.

[14] Siddharth Gopal and Yiming Yang. 2015. Hierarchical bayesian inference and
recursive regularization for large-scale classification. TKDD 9, 3 (2015), 1–23.

[15] Wei Huang, Enhong Chen, Qi Liu, Yuying Chen, Zai Huang, Yang Liu, Zhou Zhao,
Dan Zhang, and Shijin Wang. 2019. Hierarchical multi-label text classification:
An attention-based recurrent network approach. In CIKM’19. 1051–1060.

[16] Jihyeok Kim, Reinald Kim Amplayo, Kyungjae Lee, Sua Sung, Minji Seo, and
Seung-won Hwang. 2019. Categorical Metadata Representation for Customized
Text Classification. TACL 7 (2019), 201–215.

[17] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In
EMNLP’14. 1746–1751.

[18] Daphne Koller and Mehran Sahami. 1997. Hierarchically Classifying Documents
Using Very Few Words. In ICML’97. 170–178.

[19] Sachin Kumar and Yulia Tsvetkov. 2019. Von mises-fisher loss for training
sequence to sequence models with continuous outputs. In ICLR’19.

[20] Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional
similarity with lessons learned from word embeddings. TACL 3 (2015), 211–225.

[21] Keqian Li, Shiyang Li, Semih Yavuz, Hanwen Zha, Yu Su, and Xifeng Yan. 2019.
HierCon: Hierarchical Organization of Technical Documents Based on Concepts.
In ICDM’19. 379–388.

[22] Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng Chen, and Wei-
Ying Ma. 2005. Support vector machines classification with a very large-scale
taxonomy. ACM SIGKDD Explorations Newsletter 7, 1 (2005), 36–43.

[23] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, Nov (2008), 2579–2605.

[24] Yuning Mao, Jingjing Tian, Jiawei Han, and Xiang Ren. 2019. Hierarchical Text
Classification with Reinforced Label Assignment. In EMNLP’19. 445–455.

[25] Yuning Mao, Tong Zhao, Andrey Kan, Chenwei Zhang, Xin Luna Dong, Christos
Faloutsos, and Jiawei Han. 2020. Octet: Online Catalog Taxonomy Enrichment
with Self-Supervision. In KDD’20.

[26] Kanti V Mardia and Peter E Jupp. 2009. Directional statistics. Vol. 494. John Wiley
& Sons.

[27] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics:
understanding rating dimensions with review text. In RecSys’13. 165–172.

[28] Dheeraj Mekala, Xinyang Zhang, and Jingbo Shang. 2020. META: Metadata-
Empowered Weak Supervision for Text Classification. In EMNLP’20.

[29] Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang, Lance
Kaplan, and Jiawei Han. 2019. Spherical text embedding. In NeurIPS’19. 8208–
8217.

[30] Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han. 2019. Weakly-supervised
hierarchical text classification. In AAAI’19. 6826–6833.

[31] Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang, Chao Zhang, and Jiawei Han.
2020. Hierarchical topic mining via joint spherical tree and text embedding. In
KDD’20. 1908–1917.

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS’13. 3111–3119.

[33] Maximillian Nickel and Douwe Kiela. 2017. Poincaré embeddings for learning
hierarchical representations. In NIPS’17. 6338–6347.

[34] Maximillian Nickel and Douwe Kiela. 2018. Learning Continuous Hierarchies in
the Lorentz Model of Hyperbolic Geometry. In ICML’18. 3779–3788.

[35] Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang, Yangqiu
Song, and Qiang Yang. 2018. Large-scale hierarchical text classification with
recursively regularized deep graph-cnn. In WWW’18. 1063–1072.

[36] Yangqiu Song and Dan Roth. 2014. On dataless hierarchical text classification. In
AAAI’14. 1579–1585.

[37] Mark Steyvers, Padhraic Smyth, Michal Rosen-Zvi, and Thomas Griffiths. 2004.
Probabilistic author-topic models for information discovery. In KDD’04. 306–315.

[38] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune
BERT for text classification?. In CCL’19. 194–206.

[39] Duyu Tang, Bing Qin, and Ting Liu. 2015. Learning semantic representations
of users and products for document level sentiment classification. In ACL’15.
1014–1023.

[40] Jian Tang,MengQu,MingzheWang,Ming Zhang, Jun Yan, andQiaozhuMei. 2015.
Line: Large-scale information network embedding. In WWW’15. 1067–1077.

[41] Chenglong Wang, Feijun Jiang, and Hongxia Yang. 2017. A hybrid framework
for text modeling with convolutional rnn. In KDD’17. 2061–2069.

[42] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph
embedding: A survey of approaches and applications. IEEE TKDE 29, 12 (2017),
2724–2743.

[43] Xiao Wang, Yiding Zhang, and Chuan Shi. 2019. Hyperbolic heterogeneous
information network embedding. In AAAI’19. 5337–5344.

[44] Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Barros. 2018. Hierarchical multi-
label classification networks. In ICML’18. 5075–5084.

[45] Richard C Wilson, Edwin R Hancock, Elżbieta Pekalska, and Robert PW Duin.
2014. Spherical and hyperbolic embeddings of data. IEEE TPAMI 36, 11 (2014),
2255–2269.

[46] Jiawei Wu, Wenhan Xiong, and William Yang Wang. 2019. Learning to Learn and
Predict: A Meta-Learning Approach for Multi-Label Classification. In EMNLP’19.
4345–4355.

[47] Mingfang Wu, Michael Fuller, and Ross Wilkinson. 2001. Using clustering and
classification approaches in interactive retrieval. Information Processing & Man-
agement 37, 3 (2001), 459–484.

[48] Huiru Xiao, Xin Liu, and Yangqiu Song. 2019. Efficient Path Prediction for Semi-
Supervised and Weakly Supervised Hierarchical Text Classification. InWWW’19.
3370–3376.

[49] Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015. Normalized word embed-
ding and orthogonal transform for bilingual word translation. In NAACL-HLT’15.
1006–1011.

[50] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-
neous Network Representation Learning: A Unified Framework with Survey and
Benchmark. arXiv preprint arXiv:2004.00216 (2020).

[51] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
2016. Hierarchical attention networks for document classification. In NAACL’16.
1480–1489.

[52] Yu Zhang, Yu Meng, Jiaxin Huang, Frank F. Xu, Xuan Wang, and Jiawei Han.
2020. Minimally Supervised Categorization of Text with Metadata. In SIGIR’20.
1231–1240.

[53] Yu Zhang, Wei Wei, Binxuan Huang, Kathleen M Carley, and Yan Zhang. 2017.
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location
Estimation. In CIKM’17. 2423–2426.

[54] Yu Zhang, Frank F. Xu, Sha Li, Yu Meng, Xuan Wang, Qi Li, and Jiawei Han. 2019.
HiGitClass: Keyword-Driven Hierarchical Classification of GitHub Repositories.
In ICDM’19. 876–885.

[55] Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu, Ning Ding, Haoyu Zhang,
Pengjun Xie, and Gongshen Liu. 2020. Hierarchy-Aware Global Model for Hier-
archical Text Classification. In ACL’20. 1106–1117.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 The Von Mises-Fisher Distribution

	3 Model
	3.1 A Hierarchical Generative Process
	3.2 Joint Representation Learning
	3.3 Hierarchical Data Augmentation
	3.4 Hierarchical Classifier Training

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Comparison
	4.3 Ablation Study of Representation Learning
	4.4 Ablation Study of Data Augmentation
	4.5 Visualization of Tree Embedding

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

