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ABSTRACT

We propose a single unified minimax entropy approach for
user preference modeling with multidimensional knowledge.
Our approach provides a discriminative learning protocol
which is able to simultaneously a) leverage explicit human
knowledge, which are encoded as explicit features, and b)
model the more ambiguous hidden intent, which are encoded
as latent features. A latent feature can be carved by any
parametric form, which allows it to accommodate arbitrary
underlying assumptions. We present our approach in the
scenario of check-in preference learning and demonstrate it is
capable of modeling user preference in an optimized manner.
Check-in preference is a fundamental component of Point-

of-Interest (POI) prediction and recommendation. A user’s
check-in can be affected at multiple dimensions, such as the
particular time, popularity of the place, his/her category and
geographic preference, etc. With the geographic preferences
modeled as latent features and the rest as explicit features,
our approach provides an in-depth understanding of users’
time-varying preferences over different POIs, as well as a
reasonable representation of the hidden geographic clusters
in a joint manner. Experimental results based on the task of
POI prediction/recommendation with two real-world check-
in datasets demonstrate that our approach can accurately
model the check-in preferences and significantly outperforms
the state-of-art models.

1. INTRODUCTION
As the check-in feature becomes increasingly popular in

major social network services (SNS) such as Foursquare,
Facebook, etc., numerous research efforts have been aimed
at mining users’ check-in behaviors. In this paper, we con-
sider the problem of modeling users’ time-aware check-in
preferences. Formally, our goal is to learn a time-aware dis-
tribution over POIs for each user: p(l|u, t), where u denotes
a user, t denotes a time point, l denotes a POI and p(l|u, t)
denotes the conditional probability that l is checked in given
that the user is u and the time point is t. This distribution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM’16, February 22–25, 2016, San Francisco, CA, USA.

c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3716-8/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2835776.2835839

allows us to predict what are the top places a user would like
to check in at a given time, which can be of great interest
to both business owners and advertisement providers.

To approach this problem, we propose a discriminative
learning framework which allows a subset of the features to
be latent under the minimax entropy principle. In contrast
to the standard discriminative learning protocol (e.g. SVM,
logistic regression) where features are readily available be-
fore training, we introduce the concept of latent features.
The value of a latent feature is not known before training,
but is specified by a parametric form with unknown param-
eters. The parametric form can capture arbitrary underly-
ing assumptions to describe the feature. For example, if a
set of latent features are cluster indicators, the parameters
can specify the underlying clustering structure. During the
training process, the latent parameters are jointly learned
with the classification task. We illustrate in the following
paragraphs why this is the desired strategy.
Why maximum entropy?

A naive way to estimate p(l|u, t) is simple counting. For
each user u at time t, we can get the histogram of POIs (l’s)
and view it as the objective distribution. While this distri-
bution perfectly fits the seen data, it is not generalizable,
i.e., it can never predict unvisited POIs for users and will
fail to generate outputs for unseen time points.

We prefer a model which explains the seen data well and

meanwhile has good generalizability. To this end, instead of
exactly matching p(l|u, t) to the empirical distribution, it is
natural to extract features from the user-time-POI 〈utl〉 tu-
ples and impose the constraints that p(l|u, t) match the em-
pirical statistics in the feature space. Among these qualified
distributions, we select the distribution with the maximum
entropy as the optimal distribution, as it assumes least bias
on the model beyond the constraints we specify [11].
Why minimax entropy? (Why latent features? Why
should they be jointly learned?)

User preferences over POIs can be affected by explicit fea-
tures such as the category of a POI, the day of a week, etc.,
meanwhile it can also be affected by the more ambiguous
features such as the geographic region, which is less clear
how to encode as features effectively. For example, it is not
straightforward to draw the boundary for “downtown Man-
hattan” or to classify if a POI belongs to it. Therefore, we
introduce latent features to model this kind of ambiguity.
Taking the geographic feature as an example, we can as-
sume there exist geographic clusters, each of which is speci-
fied by latent parameters: a center (coordinates of latitude
and longitude) and a radius (a positive real number). Given
a POI, we define a weight vector over different clusters as a
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latent feature vector, where the weight on each cluster is de-
termined by a parametric function which takes the latitude-
longitude of the POI as input. With both explicit and latent
features, we propose a minimax entropy approach to jointly
learn the latent parameters together with the check-in pref-
erences (p(l|u, t)). The joint learning approach is motivated
by the fact that the clustering structure is not only deter-

mined by geographic proximity, but also affected by how well

it explains user check-ins. For example, even if two POIs are
very close to each other geographically, if they have never
been visited by the same user, it may not be appropriate to
put them into the same cluster. In sum, the jointly learned
geographic clusters are specially tailored to boost the learn-
ing task’s performance rather than just provide a standalone
clustering results.

Contributions

• We propose a single unified minimax entropy approach
which elegantly leverages explicit features and latent
features for user preference modeling. It boosts the
flexibility and expressiveness of the standard discrim-
inative learning models significantly.

• Flexible as the way latent features are defined by para-
metric forms, the parameters governing the latent fea-
tures are recovered jointly with the learning task in
a principled way, which serve to explain the inherent
structure of the learning task.

• We demonstrate the effectiveness of our approach in
the context of check-in preference learning with its rich
types of information. It opens up a promising direction
for preference learning with multidimensional hetero-
geneous knowledge.

The rest of the paper is organized as follows. Section 2
first details the modeling of users, POIs and the way we
specify the geographic clusters; and then formally defines
the problem. We introduce our framework for check-in pref-
erence modeling in Section 3 and discuss related work in
Section 4. We analyze the connections of our approach to
other standard approaches in Section 5, report our experi-
mental results on real-world data in Section 6 and conclude
our study in Section 7.

2. PROBLEM FORMULATION
In this section, we define the POI profiles and user pro-

files with both explicit knowledge and the latent geographic
clustering structure governed by latent parameters. Then
we give the formal definition of check-in preference model-
ing. The notations used in this paper are summarized in
Table 1.
Let U , T , L, C be the user set, time set, POI set and

category set respectively. Our data contains the histories of
user check-ins.

DEFINITION 1 (Check-in). A check-in is denoted by

a user-time-POI tuple 〈utl〉, where u ∈ U, t ∈ T and l ∈ L.
Each POI l is associated with its category, latitude and lon-

gitude. The time is represented by the day of week and hour

of day1.

1There are 7x24 unique values in T under this setting. How-
ever, one can index time with finer or coarser granularity as
well. Overlapped time intervals are also allowed.

Table 1: Summary of Notations

Symbol Description

u, U a user, user set
t, T a time index, time index set; day(t) and

hour(t) denote the day index and hour
index of t, respectively

l, L a POI, POI set; cat(l) denotes the cate-
gory of l

C category set
o = (o1, o2, ..., oR) the centers of the geographic clusters
r = (r1, r2, ..., rR) the radiuses of the geographic clusters
cu = (cu

1
, cu

2
, ..., cuC) u’s category preference

gu = (gu
1
, gu

2
, ..., guR) u’s geographic preference

cl l’s one-hot encoding of its category
gl = (gl

1
, gl

2
, ..., glR) l’s weights on different regions

pl l’s global popularity
dl = (dl

1
, dl

2
, ..., dl

7
) l’s daily popularity profile

hl = (hl
1
, hl

2
, ..., dl

24
) l’s hourly popularity profile

πutl = p(l|u, t) the conditional probability of checking in
at POI l given a user u and time t

π̃ut = p̃(u, t), π̃utl =
p̃(l|u, t)

the empirical distributions estimated
from data

Π the true check-in preference distribution

DEFINITION 2 (Region). A region is a geographic

cluster defined by the latitude and longitude of the center

o = (olat, olon) and a radius r > 0. The (o, r)’s are the

latent parameters.

DEFINITION 3 (POI Profile). A POI l is represent-
ed by a profile2 ρ(l) = [cl,gl(o, r),dl,hl, pl].

• cl (a one-hot encoding of l’s category): cl has cli = 1
if the i-th category in C is the category of l and 0
otherwise.

• gl (the geographic profile of l): The geographic profile
of a POI is modeled by a weight vector over different
regions. The weight is determined by the POI’s dis-
tance to the center of a region and the radius of the
region:

g
l
i = exp(−

dist(l, oi)

ri
) (1)

where dist(·, ·) is the Euclidean distance3.

When dist(l, o) = 0, the weight reaches its maximum
1; as dist(l, o) becomes larger, the weight decreases to-
wards 0. The radius r controls the decreasing speed
w.r.t dist(l, o). A smaller r indicates a more concen-
trated cluster, i.e., the weight decreases drastically as
the distance increases. Note that the weight function
does not necessarily have to be defined in this way. A
function that can satisfy the desired properties suffices.

• pl (global popularity of l): The global popularity of a
POI is defined as the total number of check-ins at this
POI.

• dl,hl (the daily popularity profile and hourly popular-
ity profile of l): POIs have time varying popularity as

2We use bold letters to denote column vectors. The com-
ma between column vectors indicates a vertical stack of the
vectors.
3Other distance measures apply as well.
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well. For example, a nightclub has its rush hours at
night but is either closed or rarely visited before sun-
set. We compute the time varying popularity based on
the aggregate statistics from all users. dli is the pro-
portion of check-ins at l that happen on the ith day of
a week and hl

i is the proportion of check-ins at l that
happen on the ith hour of a day.

DEFINITION 4 (User Profile). A user u is repre-

sented by a profile ρ(u) = [cu,gu(o, r)].

• cu (user u’s preference over categories): We define user
u’s preference of category i (i.e., cui ) to be the propor-
tion of his/her check-ins that fall into category i.

• gu (user u’s preference over regions): In addition to
the category preference, users are also characterized
by their geographic preferences over different regions.
We define user u’s geographic preference of a region i
(i.e., gui ) to be the aggregate weights at region i of all
his/her check-ins .

We are now able to formulate the check-in preferences
modeling problem as follows.

PROBLEM 1 (Check-in Preferences Modeling).
Given a training set of user check-in tuples, where each tuple

〈utl〉 is associated with a user profile ρ(u) and a POI pro-

file ρ(l) , jointly learn the conditional probability of checking

in at POI l given a user u and time t, denoted by πutl =
p(l|u, t), ∀u, t, l; and the geographic clustering structure gov-

erned by latent parameters o and r.

3. AMINIMAXENTROPYAPPROACHFOR

MODELINGCHECK-IN PREFERENCES
In this section, we first assume the latent parameters are

given, i.e., all the features are explicit, and present the maxi-
mum entropy (MaxEnt) model for learning the check-in pref-
erences. Then we present the proposed minimax entropy
model which estimates the latent parameters jointly with
the preference learning.

3.1 A Maximum Entropy Model
The most aggressive way to model the check-in prefer-

ences is just to let πutl equal the empirical distribution4

π̃utl =
#〈utl〉∑
l
#〈utl〉

. However, this will overfit the data and

is not generalizable. We want to construct a model which
explains the seen data well, and meanwhile has good gen-
eralizability. To this end, we adopt the maximum entropy
principle to specify {πutl}, i.e., we choose the most “unifor-
m” distribution with carefully chosen constraints instantiat-
ed by features. These constraints should guarantee that our
model accords with the data statistics we feel essential in
modeling the check-in preferences.

4In this paper, we use #〈utl〉 to denote the number of ap-
pearances of the check-in tuple 〈utl〉 in the data, and #
to denote the total number of check-ins. We use “ ˜ ” to
denote the empirical distribution. Later we will also see

p̃(u, t) = π̃ut =

∑
l
#〈utl〉

#

3.1.1 Features Based onMultidimensional Preferences

We consider the following factors to model check-in prefer-
ences: temporal preference, category preference, geographic
preference and the popularity of the POI. Consider the fol-
lowing scenario: on a Friday evening, Alice just finished yet
another week of hard work; she would like to have a great
dinner at a seafood restaurant and then she figures a popu-
lar Boiling Crab branch is just nearby. Then it is very likely
she checks in at this place. We design the following features
to instantiate the constraints which will be used to specify
our model {πutl}.

• Category Preference. The extent to which a POI l
matches a user u’s category preference is estimated by

fc(〈utl〉) = cu
T

cl.

• Geographic Preference. The extent to which a POI
l matches a user u’s geographic preference is estimated

by fg(〈utl〉) = guT

gl.

• Temporal Preference. If we represent each time
index t with two one-hot encodings: dt, ht for the
day and hour respectively, the extent to which a POI
l’s daily popularity matches a time t is estimated by

fd(〈utl〉) = dlTdt, and hourly popularity by fh(〈utl〉) =

hlTht.

• Popularity Preference. As more popular POIs usu-
ally would expect more check-ins, we assign a popu-
larity preference for each POI without distinguishing
users. fp(〈utl〉) = pl.

Let f = [fc, fg, fd, fh, fp]
T . It5 measures how a POI

matches a user’s preference at a particular time. We em-
ploy constraints that require our model to accord with the
data at each dimension of the preferences, i.e., the model dis-
tribution matches the empirical distribution at the feature
space:

Eπ(f) = Eπ̃(f)

i.e.,
∑

u,t,l

p̃(u, t)p(l|u, t)f =
∑

u,t,l

p̃(u, t)p̃(l|u, t)f

i.e.,
∑

u,t,l

π̃utπutlf =
∑

u,t,l

π̃utπ̃utlf

where E denotes expectation. Note that we do not model the
joint distribution of u and t (i.e., p(u, t)) since the goal is to
predict l given u and t. We let p(u, t) = p̃(u, t) = π̃u,t. The
model parameters6 here contain {πutl, ∀u, t, l} only. This al-
so classifies our problem as a discriminative learning task (as
opposed to generative learning).

3.1.2 A Maximum Entropy Model with Fixed Latent
Parameters

With the constraints defined above, we formulate our Max-
Ent model in this section.

5A complete notation should be f(〈utl〉) =
(fc(〈utl〉), fg(〈utl〉), fd(〈utl〉), fh(〈utl〉), fp(〈utl〉))

T , in
the following of the paper, we omit (〈utl〉) for brevity and
readability.
6We slightly abuse the terminology parameter. Model pa-
rameters refer to πutl and latent parameters refer to (o, r).
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The conditional entropy of πutl is given by

H(π) = −
∑

u,t,l

π̃utπutl lnπutl = −Eπ(lnπutl)

As discussed in the previous section, we constrain the dis-
tribution π to a set C of allowed probability distributions:

C = {π|
∑

u,t,l

π̃utπutlf =
∑

u,t,l

π̃utπ̃utlf}

By the MaxEnt principle, we should select a model from
C with maximum H(π):

π
∗ = argmax

π∈C

H(π)

Therefore we have the following MaxEnt model for π:

max
π

−
∑

u,t,l

π̃utπutl lnπutl (2)

s.t.
∑

u,t,l

π̃utπutlf =
∑

u,t,l

π̃utπ̃utlf (3)

∑

l

πutl = 1 ∀u, t (4)

πutl > 0 ∀u, t, l (5)

Note that equation (3) is a vector form of |f | = 5 con-
straints, corresponding to the 5 dimensional preferences.
We solve the constrained optimization problem in the dual

space (see Appendix A), which gives the following form of
πutl:

πutl =
exp(wT f(〈utl〉))∑
l
exp(wT f(〈utl〉))

∀u, t, l (6)

where w is the Lagrange coefficients. Solving the primal
problem turns out to be maximizing the log likelihood of
the data with πutl specified by Equation (6). Therefore we
obtain the optimal w∗ from the maximum likelihood esti-
mation:

w∗ = argmax
w

LL (7)

LL =
∑

utl

π̃utπ̃utl lnπutl (8)

Finally, the solution for the primal problem is given by:

π
∗
utl =

exp(w∗T f)

Zut

, Zut =
∑

l

exp(w∗T f) ∀u, t, l

where w∗ is the optimal Lagrange coefficients, each element
of which corresponds to a constraint in Equation (3).

3.2 Recovering Latent Parameters via Mini-
max Entropy

In the previous section, we have completed the discussion
for the case where we assume the latent parameters are given
so that all the features are explicit. Now let us bring the
latent features back. We have fg as a latent feature which is
parameterized by (o, r). Therefore w∗ is also parameterized
by (o, r). The optimal solution is thus π∗(o, r):

π
∗
utl(o, r) =

exp(w∗(o, r)T f(〈utl〉)(o, r))
∑

l
exp(w∗(o, r)T f(〈utl〉)(o, r))

∀u, t, l

We propose that the optimal (o, r) should be chosen such

that π∗(o, r) is minimized and justify this statement in
this section.

To measure the quality of the check-in preference distri-
bution, we use the standard Kullback-Leibler (KL) diver-
gence [12] from π∗(o, r) to the true user check-in prefer-
ence Π. Π is the true conditional distribution: Πutl =
ptrue(l|u, t)

7. The optimal (o, r) should give the smallest
KL divergence:

(o∗
, r∗) = argmin

r>0,o

KL(Π, π
∗(o, r))

where

KL(Π, π
∗(o, r)) = EΠ(lnΠutl)− EΠ(lnπ

∗
utl)

= −EΠ(lnπ
∗
utl)−H(Π)

The difficulty here is that the true distribution Π is un-
known, thus we cannot directly evaluate the first term. How-
ever, under the assumption that our sample size is reason-
ably large, which means the expected feature statistics EΠ(f)
can be approximated exactly by neglecting the estimation
errors in the observed statistics Eπ̃(f), we obtain the follow-
ing theorem.

THEOREM 1. The KL divergence from π∗(o, r)8 to the

true distribution Π is given by KL(Π, π∗) = H(π∗)−H(Π)

Proof. We need to prove EΠ(lnπ
∗
utl) = −H(π∗). As

shown before, π∗ has the following form:

π
∗
utl =

exp(w∗T f)

Zut

, Zut =
∑

l

exp(w∗T f) ∀u, t, l

where w∗ is the optimal Lagrange coefficients. Hence we
have

EΠ(lnπ
∗
utl) = EΠ(w

∗T f)− EΠ(lnZut)

= Eπ̃(w
∗T f)− Eπ̃(lnZut)

by Eπ̃(f) = EΠ(f)

= Eπ∗(w∗T f)− Eπ∗(lnZut)

by Equation (3)

= Eπ∗(lnπ∗
utl) = −H(π∗)

and the result follows.

As the entropy of Π is fixed, and the entropy of π∗ is pa-
rameterized by (o, r), in order to minimize KL(Π, π∗(o, r)),
we conclude that the latent variables should be estimated
by minimizing the maximized entropy:

(o∗
, r∗) = argmin

o,r

∑

u,t,l

−π̃utπ
∗
utl(o, r) lnπ

∗
utl(o, r) (9)

Therefore, we obtain our entire minimax entropy framework

7As before, we do not model Πut = ptrue(u, t) and let Πut =
π̃ut.
8For brevity, we use π∗ short for π∗(o, r) in this proof
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as summarized in the following program:

min
o,r

max
π

−
∑

u,t,l

π̃utπutl lnπutl (10)

s.t.
∑

u,t,l

π̃utπutlf =
∑

u,t,l

π̃utπ̃utlf (11)

∑

l

πutl = 1 ∀u, t (12)

πutl > 0 ∀u, t, l (13)

ri > 0 ∀i (14)

3.3 The Learning Algorithm

Algorithm 1: The learning Algorithm for the Minimax
Entropy Approach of Check-in Preferences Modeling

Input: A user check-in database {〈utl〉}
Output: Check-in preference {πutl}, ∀u, t, l; geographic

clustering parameters (o, r)

1 Do a K-means clustering on the latitude-longitude
coordinates of the POIs. Initialize o∗ and r∗ to be
centers and average distances to the centers.

2 for iter = 1:Maxiter do
3 MaxEnt step. With (o, r) fixed to (o∗, r∗), solve

the MaxEnt problem to obtain w∗.

w∗ =argmax
w

LL

where LL(w,o∗
, r∗) =

∑

utl

π̃utπ̃utl lnπutl,

πutl =
exp(wT f(o∗, r∗))∑
l
exp(wT f(o∗, r∗))

MinEnt step. With w fixed to w∗, estimate the
latent parameters (o, r).

(o∗
, r∗) = argmin

r>0,o

−LL

where LL(w∗
,o, r) =

∑

utl

π̃utπ̃utl lnπutl,

πutl =
exp(w∗T f(o, r))∑
l
exp(w∗T f(o, r))

4 end

While it is hard to obtain a close form solution, we propose
a neat coordinate descent learning procedure to solve the
optimization problem.
We convert the inherent MaxEnt part to the dual space

(see details in Appendix A) which reduces the problem to
the following form:

min
r>0,o

min
w

−LL i.e., min
r>0,o,w

−LL (15)

where LL is given by Equation (8).
The objective now is to find the set of (w,o, r) which

minimizes the minus log likelihood LL of the data. This is
divided to solving a MaxEnt problem (finding w∗ with (o, r)
fixed) and a MinEnt problem (finding (o∗, r∗) with w fixed).
Algorithm 1 sketches the learning algorithm. First, the ge-

ographic centers are initialized by a K-means clustering; the
radius for each cluster is initialized by the average distance
to the center. After initialization, we solve the MaxEnt and

MinEnt problems alternately to get the optimal (w,o, r).
Both sides of optimization are solved by the L-BFGS [17]
algorithm. See Appendix B for the optimization details.

4. RELATEDWORK
Modeling the time aware check-in preference of users is

the fundamental component of location9 prediction and lo-
cation recommendation. We review previous study on loca-
tion prediction/recommendation tasks. Then we review the
background of related discriminative models.

4.1 Location Prediction/Recommendation
There has been a substantial amount of research on loca-

tion prediction/recommendation ever since the GPS devices
became widely available. The prediction and recommenda-
tion tasks are closely related since they both predict a list
of locations which are evaluated by the prediction accuracy.
There are several subtle differences though. Location pre-
diction usually focuses more on the places which have been
already visited by a user and largely depends on the time
point. Therefore, spatio-temporal regularity usually plays
an important role in the task. On the contrary, location rec-
ommendation task focuses more on the unvisited locations
based on collaborative filtering. The recommendation may
or may not be time aware as well. Unlike movie recommen-
dations where one may not want to watch a movie he/she
has already watched before, a location can be checked in re-
peatedly by a user. Therefore it is desirable to include the
places which have been visited before in the recommenda-
tion. In this paper, we do not distinguish between visited
locations and new locations but output a distribution over
all locations, where the most probable ones can be used for
both prediction and recommendation.

One line of research [24, 25, 26, 27] focus on the study
of GPS trajectories collected from human movements. Lo-
cation prediction/recommendation on the trajectory data
is a simpler task compared to the check-in data since tra-
jectories contain consecutive movements of users which are
very dense. The Nokia Research Center collected GPS data
from 200 smartphone volunteers in the course of 1 year and
launched a next place prediction challenge [14] in 2012. The
best entries achieved prediction accuracies of above 50%.

However, location prediction/recommendation with the
check-in data from LBSN is much more challenging due to
the sparseness. Cheng et al. [4] propose a mixed hidden
Markov model to predict the category of a user’s next move
and then predict the location given the category. However,
while human movements may be Markovian, people usually
do not check in at every POI they visit. Gao et al. [9, 10]
explore the Hierarchical Pitman-Yor process [19] and view
the check-in sequences as a language model to encode the
historical effects. This method works much better for GPS
trajectories [10] than check-in data [9] because the model
also assumes dependencies between consecutive check-ins.
Cho et al. [5], Yuan et al. [23] and Gao et al. [8, 7] highlight
the daily periodicity of check-ins and show that temporal
effects have significant influence on capturing users’ check-
in behaviors. Ye et al. [9] incorporate geographic influence
to a collaborative filtering model by assuming a power-law
distribution of the pairwise check-in distances. Cheng et

9In this paper, we use “location” and “POI” interchangeably
as long as there is no ambiguity.
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al. [3] extend this work to multi-center geographic distri-
butions and combine it with a matrix factorization model.
Yin et al. [21], Kurashima et al. [13] and Liu et al. [15, 16]
propose generative models which introduce the concept of
user/location profiles. Our approach is able to incorporate
the various factors from the previous work and model them
in a unified way.

4.2 Related Discriminative Models
The maximum entropy principle was first proposed by

E.T. Jaynes [11] in 1957. It provides a very general rationale
why we should select the model with the maximum entropy.
It has seen widescale applications to real world problems
recently especially within the natural language processing
field [2]. Introducing latent variables to discriminative mod-
els is not new. The minimax entropy principle is first pro-
posed in the computer vision community by Zhu et al. [30]
for feature selection within the MaxEnt framework, which
has motivated various methods of statistical estimation and
pattern recognition. Lately Zhou et al. [28] adopted this
methodology to study a crowdsourcing problem and demon-
strated substantial performance improvement over existing
methods. Previous work [20, 29, 22, 18] have introduced hid-
den variables to other discriminative models such as SVMs
and CRFs in various forms as well. However, allowing fea-
tures to be governed by a parametric form is innovative,
which directly corresponds to the generative assumptions of
the features. This makes our approach especially suited to
user preference modeling where multidimensional heteroge-
neous information need to be modeled. The optimization of
the parameters is naturally guided by the MinEnt principle,
which not only makes it theoretically elegant but also leads
to a handy coordinate descent solution.

5. DISCUSSIONS
In this section, we analyze the connections from our ap-

proach to several standard approaches. We also explain how
various additional information can be incorporated and how
cold start issue is naturally handled by our approach.

5.1 Connection to Maximum Likelihood Esti-
mation

Our model has the intuitive interpretation of a discrimi-
native maximum likelihood estimation (MLE). We have al-
ready seen that the final objective is to seek a maximum
likelihood estimator (w∗,o∗, r∗) for the objective function
LL, with the conditional probability defined as p(l|u, t) =

πutl =
exp(wT f)∑
l
exp(wT f)

.

5.2 Connection to Matrix Factorization based
Collaborative Filtering

Our model is a linear model in the sense that the predic-
tion score is determined by wT f(〈utl〉), and w is determined
not only by the user check-in data, but also on the features
f(〈utl〉). In the standard matrix factorization (MF) model
for recommendation where the access to meaningful infor-
mation such as category, latitude and longitude is limited,
it is still possible to perform prediction via purely utilizing
the factorization of the user-item rating matrix R as approx-
imated by the product of two low-rank matrices. Specifical-
ly, by carefully selecting a reasonable dimension parameter
K which is much smaller than the number of users M and

items N , MF approximates R ≈ UTV where UM×K is a
user matrix and V K×N is an item matrix. An interesting
analogy is that the columns of U (or V ) can be viewed as
profiles of users (or items). However, unlike in our mod-
el where parameter estimation (w) is performed and latent
geographic clusters are learned jointly, this approach com-
putes the prediction score in a rather simplified manner as
uT v where u is the corresponding column in U for a user
and v is the column in V for an item.

5.3 Incorporate Various Information
To make our model concrete, we defined every detail of

how the features are generated. Nevertheless, the features do
not necessarily have to be defined as we did in the previous
sections. In this paper, we follow a natural thought that the
category, geographic, temporal and popularity preferences
are influential factors for a check-in. However, we can mod-
el other types of information into our learning framework as
well in the forms of both explicit and latent features. For
example, if the description and reviews of POIs are avail-
able, we can incorporate text features as explicit features. If
social network information is available, we can incorporate
friend clusters as latent features. With both explicit and
latent features, our approach models ambiguous knowledge
together with explicit knowledge in a unified manner to find
the best possible way to utilize them.

5.4 Cold Start
As in most recommendation problems, cold start is an

important issue in preference learning. If we have little his-
torical data for a user, predicting her preference typically
falls back to an appropriate way of utilizing ”independen-
t” features that do not reply on histories, such as gender,
age, hometown, etc. Our model can elegantly handle such
cases by just taking care of these information as addition-
al features. They can be both explicit or latent. In this
study, we do not have those demographic information avail-
able thus we do not define them in the profiles. However,
these features can be utilized exactly the same way as the
defined ones. We don’t even need to worry about how to
distinguish cold start users from the heavy users since the
automatically learned weights help us to do the trade-off. In
the extreme case where a user has no history at all, the pre-
diction will fall back to a regression on those ”independent”
features. This treatment of cold start scenarios is of the
similar style as in [1], with better expressiveness, reduced
model complexity and simpler optimization procedure.

6. EXPERIMENTS
We introduce our datasets and report our experimental

results in this section. We evaluate our proposed method on
the location prediction/recommendation task.

First we evaluate the effectiveness of our method by ac-
curacy of prediction under various settings. Then we zoom
in to see the benefits from optimizing the latent parameters.
At the end we conduct an efficiency study and analyze the
scalability of our method.

6.1 Data
We conduct our experiments on two public real world

datasets [6] obtained from Foursquare10. The first dataset
(CA) contains 483, 813 check-in records of 4, 163 users in

10https://foursquare.com
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California USA ranging from December 2009 to June 2013.
The second dataset (World) contains 2, 290, 996 check-in
records of 11, 326 users around the world ranging from Jan-
uary 2011 to December 2011. We preprocess the datasets
by removing the users and POIs with check-ins fewer than
20. Each check-in record consists of a user ID, a POI ID,
a check-in timestamp, and the latitude and longitude of the
POI. The first dataset has the category information of each
POI while the second one does not.
We sort each user’s check-ins chronologically and assign

the first 80% of the check-ins to the training set and the
remaining 20% to the test set.

6.2 Implementation

6.2.1 Smoothing the Category and Temporal Prefer-
ence

Smoothing is a common practice to avoid overfitting and
mitigate the effect from noise when estimating categorical
distributions. It assigns a tiny probability to the categories
that are not seen in the data. In our model, we do a simple
add-one smoothing to the category preference and temporal
preference of users.

6.2.2 Parameter Regularization

We incorporate a standard L2 regularization on w in the
MaxEnt step to avoid overfitting and numerical problems.
The objective function becomes −LL + 1

2
β||w||22 where β

is the regularization parameter. From our experiments, we
found that our model is insensitive to parameter regulariza-
tion. We set β to 0.2.

6.2.3 Number of Geographic Clusters

The number of clusters affect the granularity of the geo-
graphic regions. It can be empirically set by cross validation
or specified by human knowledge of how fine grained regions
we want to achieve. In this paper, we set the cluster number
to 30 for the CA dataset and 200 for the World dataset.

6.2.4 Number of Iterations

We set the global iteration number Maxiter to 20 and
run 10 iterations within each L-BFGS step based on the
empirical study of the convergence rate.

6.3 Effectiveness Study

6.3.1 Methods for Comparison

Existing models on location prediction/recommendation
are usually specifically designed emphasizing a particular
set of factors. Unlike our model, most of them cannot be
generalized to take arbitrary features. In this study, we con-
sider category, time, popularity and geographic coordinates.
Thus we compare our method (the basic MaxEnt model
with K-means initialization, and the full Minimax mod-
el) with the following three state-of-art models which can
accept the same set of features.

• PMM. A spatial-temporal location prediction model
proposed in [5], which studies the spatial-temporal reg-
ularity of user mobilities and builds a generative model
for check-ins.

• HMM. A mixed hidden Markov location prediction

model proposed in [4], which first predicts the catego-
ry of user activity at the next step and then predict

the most likely location given the estimated category
distribution. This model is compared to only for the
CA dataset because the category information is not
available for the World dataset.

• TGM. A time-aware location recommendation mod-
el proposed in [23], which employs a user-based col-
laborative filtering framework with geographic influ-
ence incorporated by a linear combination. For the
CA dataset, we enhance this model by a further lin-
ear combination with the category distribution at the
prediction time for fair comparison.

6.3.2 Evaluation on Accuracy

Evaluation Metrics. We compute the accuracy of both
location and category prediction on the test set for the CA
dataset and the accuracy of location prediction for the World
dataset. For each 〈utl〉 in the test data, we return the top-
k locations predicted by each model for (u, t). As long as
the true location l lies in the top-k set, we consider it as a
correct prediction. For categories, we obtain the category
list associated with the top-k predictions and evaluate the
accuracy in the same way.

Performance. As shown in Figure 1, our method signif-
icantly outperforms the three baselines w.r.t both POI and
category prediction at all position k’s. TGM is not work-
ing well because 1) it takes a binary user-location matrix as
the input for collaborative filtering which completely ignores
the preference over different visited POIs; 2) it involves geo-
graphic and temporal influences in an ad-hoc manner which
is difficult to coordinate in the optimal way; 3) the way it
encodes the geographic knowledge is to do a power-law fit-
ting of consecutive check-in distances, which is sensitive to
outliers and cannot capture the clustering effect of check-ins.
HMM relies a lot on the Markovian assumption of user ac-
tivity. If a user’s check-ins are not so dense (which is usually
the case since people do not check-in at every POI they vis-
it), the dependency between consecutive check-ins are weak-
ened. Once the Markovian assumption does not hold, good
performance would not be guaranteed. PMM gives the worst
performance. The generative assumption that movements
are governed by Gaussian spatial-temporal clusters is too
strict and limits the model’s expressiveness and generaliz-
ability. Another interesting phenomenon we can observe is
that despite the lack of category information for the World
dataset, the location prediction accuracy is higher than the
CA dataset for all the models. In fact, the World dataset has
comparative number of POIs with the CA dataset but has
substantially large number of checkin records. This makes
the learning task easier for all the models. The performance
difference is more significant on the CA dataset, which con-
cludes that when we have limited number of observations
for training, our MiniMax model generalizes better than the
baseline models.

6.3.3 The Influence of Latent Features

Performance. We plot the accuracy@top-5 of our model
as the latent parameters are optimized with 20 iterations in
Figure 2. The accuracy continues to improve as the latent
parameters are optimized. It is also worth noting that the
convergence is very fast.

A Visualization of the Geographic Clusters. To
illustrate the intuition behind optimizing the latent param-
eters, we show a snapshot of the San Francisco Bay Area
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Figure 2: Prediction Accuracy @ top-5 as we optimize the latent parameters. The prediction becomes more
accurate and the convergence is very fast.

Figure 3: Geographic Clusters

(a) SF k-means (b) SF (c) SF k-means (d) SF

geographic clusters obtained from our algorithm for the CA
dataset in Figure 3(b). We assign each POI l to a cluster
by selecting the largest weight of gl. Figure 3(a) shows the
initial k-means clustering results.
The optimal clustering structure is refined from the K-

means clustering via the interaction with the check-in pref-
erences modeling. We can observe interesting refinements.
As shown in Figure 3(d) and Figure 3(c), we zoom in to San
Francisco (SF) city. As K-means clustering blindly clusters
the POIs by geographic latitudes and longitudes, the cluster
centered at SF (yellow) stretched to San Rafael, Oakland
and Berkeley; while in the refined clusters, SF corresponds
to a concentrated cluster. The SF cluster extends north
right to the vicinity of the Golden Gate Bridge as tourists
to SF would always like to explore the Golden Gate Bridge.

6.4 Efficiency Study
In this section, we first analyze the complexity of our al-

gorithm and then present experimental results on the exe-
cution time.

6.4.1 Complexity Analysis

The coordinate descent algorithm contains a MaxEnt step
and a MinEnt step. Within each step, the space and time
consuming part lies in the evaluation of the function value
and the gradient (see Appendix B), which determines the
complexity of our algorithm. We show that both space and
time complexity are linear w.r.t the number of users, time
indices and POIs.

Space. At each iteration of both steps, we need to store
πutl for all (u, t) pairs that appear in the training set and
any l ∈ L, which requires at most O(|U ||T ||L|) space. Com-
putation of the feature values are done at the beginning of
each step and requires at most two components of (u, t, l),
therefore does not affect the order of space complexity. The
space required to store the current estimate of the solution
in the MaxEnt step is the dimension of the features f . In the
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MinEnt step it is 3 times the number of geographic clusters,
which is also not contributing to the order of complexity.
Thus the overall space complexity is O(|U ||T ||L|).
Time. At each iteration, to evaluate the function and

gradient values, we need to compute πutl for all (u, t) pairs
that appear in the training set and any l ∈ L. Let the
total iteration number be M and let the maximum function
evaluation number be M1 at one MaxEnt step and M2 at
one MinEnt step. The overall time complexity is O(M(M1+
M2)|U ||T ||L|).

6.4.2 Execution Time Evaluation
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Figure 4: Average Execution Time of A Func-
tion/Gradient Evaluation

To examine the efficiency of our algorithm, we illustrate
the execution time of a function/gradient evaluation for both
the MaxEnt step and the MinEnt step. The time con-
suming computation of πutl can be computed in parallel
since {πutl|l ∈ L} can be computed for each (u, t) pair si-
multaneously. Therefore we examine the average execution
time of a function/gradient evaluation over all (u, t) pairs.
We vary the pruning threshold δα and obtain the time -

candidate set size curves shown in Figure 4. They all ex-
hibits a linear trend in |L| while the gradient evaluation is
more expensive than the function value evaluation. |Lcand|
is the average size of the candidate set over all (u, t) pairs.
In the ideal case, the overall time complexity can be reduced
to O(M(M1 +M2)|Lcand|).

7. CONCLUSIONS
In this paper, we develop a novel minimax approach for

modeling time-aware check-in preferences. Specifically, our
approach has the advantage of investigating the multidimen-
sional knowledge of entities (users, locations) as well as joint-
ly learning the latent geographic clustering. The proposed
discriminative model can strike a good balance between ex-
plaining seen data and generalizing to unseen data by re-
quiring the model to satisfy meaningful relaxed constraints.
Going beyond check-in preference modeling, the proposed
minimax entropy model also provides a general guidance to
model ambiguous features with arbitrary parametric forms,
which significantly boosts the flexibility and expressiveness
of the standard discriminative learning models.
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APPENDIX

A. PRIMAL DUAL CONVERSION
The Lagrangian of the MaxEnt problem is

L = −
∑

u,t,l

π̃utπutl lnπutl

+
∑

α

wα(
∑

u,t,l

π̃utπutlfα −
∑

u,t,l

π̃utπ̃utlfα)

+
∑

u,t

ηu,t(
∑

l

πutl − 1)

where {wα} and {ηu,t} are the Lagrange multipliers.

Let
∂L

∂πutl

= 0, we have

− π̃ut(1 + lnπutl) +
∑

α

wα(π̃utfα) + ηu,t = 0

⇐⇒ lnπutl =
∑

α

wαfα +
ηu,t

π̃ut

− 1

Apply the constraint
∑
l

πutl = 1 ∀u, t, we can get

πutl =
exp(

∑
α wαfα)∑

l exp(
∑

α wαfα)
∀u, t, l (16)

Plugging Equation (16) into L gives that L is the minus log
likelihood of the data. Maximizing the primal problem becomes
minimizing the dual problem, which turns out to be maximizing
the log likelihood of the data with πutl specified by Equation (16).
Therefore w∗ is the maximum likelihood estimation:

LL =
∑

utl

π̃utπ̃utl lnπutl, w∗ = argmin
w

−LL

where πutl is of the form given in Equation (16).

B. OPTIMIZATION DETAILS
We derive the gradients required by L-BFGS for both MaxEnt

and MinEnt steps.

• The MaxEnt problem is an unconstrained optimization prob-
lem in the dual space. The gradient w.r.t w is given by

∂LL

∂wα

=
∑

u,t,l

π̃utπ̃utlfα −
∑

u,t,l

π̃utπutlfα

where πutl is given by Equation (16). This is the difference
between the expectations of the feature fα from the model
and the empirical mean.

The Hessian matrix is given by

∂2LL

∂wα∂wβ

=Eπ [(
∑

u,t,l

π̃utπ̃utlfα −
∑

u,t,l

π̃utπutlfα)

(
∑

u,t,l

π̃utπ̃utlfβ −
∑

u,t,l

π̃utπutlfβ)]

which is the covariance matrix of the features, and is thus
positive definite11. This indicates that the MaxEnt problem
is strictly convex and has a unique solution.

• The optimization over the latent parameters may or may not
be convex, depending on the form of the chosen geographic
weight function. In this paper, the problem is not convex
and L-BFGS will converge to the local minimum. We take
several trials of the iteration process to approach the global
minimum.

The gradient w.r.t (o, r) is given by

∂LL

∂zi
=

∑

u,t,l

π̃utπ̃utlwg
∂fg

∂zi
−

∑

u,t,l

π̃utπutlwg
∂fg

∂zi

where zi can be oilat, oilon or ri, wg is the weight corre-
sponding to the geographic feature fg and

∂fg

∂zi
= gui

∂gli
∂zi

+
∂gui
∂zi

gli

with gli given by Equation (1).

11only in rare cases it may be positive semi-definite
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