
J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 484 – 495, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Error-Adaptive and Time-Aware Maintenance of
Frequency Counts over Data Streams*

Hongyan Liu1, Ying Lu2, Jiawei Han2, and Jun He3

1 Tsinghua University, China 100084
hyliu@tsinghua.edu.cn

2 University of Illinois, Urbana-Champaign, USA 61801
{yinglu, hanj}@uiuc.edu

3 Renmin University of China, China 100872
hejun@ruc.edu.cn

Abstract. Maintaining frequency counts for items over data stream has a wide
range of applications such as web advertisement fraud detection. Study of this
problem has attracted great attention from both researchers and practitioners.
Many algorithms have been proposed. In this paper, we propose a new method,
error-adaptive pruning method, to maintain frequency more accurately. We
also propose a method called fractionization to record time information together
with the frequency information. Using these two methods, we design three
algorithms for finding frequent items and top-k frequent items. Experimental
results show these methods are effective in terms of improving the maintenance
accuracy.

1 Introduction

With the emergence of data stream applications, data mining for data streams has
attracted great attention from both researchers and practitioners. Among the mining
tasks for stream data, maintaining frequency counts over data streams is a basic
mining problem with a wide range of applications, such as web advertisement fraud
detection and network flow identification[1][2]. A number of algorithms have been
proposed to tackle this problem [1] [2] [3] [4] [5] [6] [7] [8]. A comprehensive
introduction to these algorithms is given in reference [2]. Most of these algorithms are
designed to maintain a set of approximate frequency counts satisfying an error
requirement within a theoretical memory bound, and they are mostly false-positive
oriented. Usually the error bound is given by an end user. To satisfy this error bound,
different algorithms use different methods to consume as less memory as possible.
Among these algorithms, an algorithm called space-saving [2] uses an integrated
approach for finding both frequent items and top-k frequent items. Both theoretical
analysis and experimental results show that this method achieves a better performance
in terms of accuracy and memory usage compared to other algorithms, such as

* This work was supported in part by the National Natural Science Foundation of China under

Grant No. 70471006 and 70321001, and by the U.S. National Science Foundation NSF IIS-
02-09199 and IIS-03-08215.

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 485

GroupTest [3], FREQUENT [4], CountSketch [7] and Probabilistic-InPlace [4].
However, after studying these existing algorithms, we have following observations:

• Timestamp information is ignored at processing each data arrival. Stream data are
temporally ordered, fast changing, massive, and potentially infinite sequences of
data. So time dimension is an important point of view to look at the data. Also,
people are usually interested in recent changes of the data streams. However, as far
as we know, all of these existing algorithms for approximating the frequency
counts do not take this kind of information into account.

• Precision and recall may not be enough to measure the performance of an
algorithm. Many algorithms use precision and recall as important measures to
judge if an algorithm is good. However, precision and recall depend on minimum
support parameter (minsup in short) and top-k parameter (k in short). For high
minsup or low k value in a skewed data stream, they are usually 1. From these two
measurements, it is hard for us to know how well an algorithm does for
maintaining the frequency counts as a whole. For example, if we use 10000
counters to monitor frequency counts of items over a data stream with length of
100,000 and 10000 distinct items. More than 50% of the frequency counts
maintained by space-saving are 1, and in the meantime they also have the highest
estimation error among all the counts maintained, while the exact answer tells us
that only 4% of these counts are 1. But this aspect is not easy to be seen from
precision and recall.

In this paper we focus on addressing these two issues described above. We propose
three algorithms: SSTime, Adaptive, and AdaTime. Following are some contributions
made in this paper:

• We propose to make use of time dimension information when designing the
pruning strategy. In order to do that, we propose a method, called fractionization ,
to compress timestamp of each arrival for an item into existing count and error
data. We also propose several methods to utilize this information to achieve better
pruning result.

• We propose to use the sum of maintained error and the error of estimation error as
well as the sum of all errors to measure the quality of mining algorithm. In order
to improve the quality of mining results in terms of these measurements, we
develop a pruning strategy, called error-adaptive pruning, to prune items
adaptively so that the error bound can be achieved and in the meantime a low
maintained error can also be achieved.

• We develop and implement an algorithm named Adaptive to use error-adaptive
pruning technique to maintain frequency counts over data streams. Comprehensive
experimental studies indicate that this algorithm can achieve better performance.

• We design and implement two algorithms, SSTime and AdaTime, to extend the
existing space-saving algorithm and the new algorithm Adaptive by taking the time
dimension into consideration. Experimental results show that time information is
effective in terms of improving the mining quality.

The remainder of the paper is organized as follows. Section 2 describes how to
keep and use time dimension, and give the description of algorithm SSTime. Section 3
describes the error-adaptive pruning technique, and presents two new algorithms

486 H. Liu et al.

Adaptive and AdaTime. Section 4 gives three measures as a complement to existing
measures for performance study and presents experimental results, and section 5
concludes the paper.

2 Keeping and Using Time Information

In this section, we describe our method to consider time information while
summarizing the dynamic data stream.

2.1 Problem Definition

Let I be a set of single items, I = {e1, e2, …, en}. Given a single item stream D of size
N, an item ei is called frequent if its frequency count, fi, in this stream exceeds a user-
specified support ⎡ϕN⎤, where ϕ is a user-specified threshold, called minimum
support (minsup). An item ej is called a top-k frequent item if its frequency count is
among the k highest frequencies, where k is specified by user.

For a data stream application, the exact solution of finding all of the frequent items
or finding all of the top-k frequent items is usually impractical due to time and space
limitation. Therefore, the problem becomes finding an approximate set of frequent
items and top-k items. To solve this problem, except for the parameter minsup and k,
an error rate, ε, is also given by a user. With the relaxation of the original problem, the
task of mining frequent items becomes finding all of frequent items whose estimated
frequency counts exceeds ⎡ϕN⎤, where the difference between the estimated counts
and their true counts is at most εN. Similarly, the task of finding top-k frequent items
becomes finding k items with highest estimated frequency counts, where the
difference between the estimated counts and their true counts is also at most εN.

2.2 Fractionization: A Method to Keep Time Information

Existing algorithms for mining frequent items in data streams can be categorized into
two kinds of techniques: counter-based and sketch-based. Counter-based method use
an individual counter for each item monitored. In this paper we only discuss this
method.

Due to the space limitation and the big size of the stream, usually only a subset of
all of items can be monitored in the main memory. Suppose we use m counters in
memory to keep frequency counts, then at any point of time, only m distinct items are
monitoring.

Almost all of the counter-based algorithms use the following method to maintain
item’s frequency. If the newcome item is currently monitored, its frequency is
increased. Otherwise, an item currently monitored is pruned to make room for the
new item. Although these existing algorithms are different from each other in terms of
pruning method, they all neglect the time information of each item arrival. In real
applications, items in data stream are changing as time changes. For example, old
frequent items may become infrequent as time goes on. Therefore, a straightforward
way to use time information is that whenever pruning is required, among candidates,

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 487

we choose old one instead of recent one to prune. But how can we judge which one is
older than others?

The answer to this question depends on how time information for every arrival of
items is recorded. If we have enough space, it is easy to record time information. But
in order to achieve high accuracy, we need to use as less memory as possible for each
counter. Therefore, how to put time information into existing information that a
counter keeps is important.

Suppose for each counter we maintain three pieces of information for an item: key,
guaranteed count, and maximum error, which can be represented as a triple (item,
count, error), where each element of this triple is usually saved as an integer. Our
method to save time information of each item arrival is called Fractionization , which
means that we first transform the information of each item into a decimal fraction, and
then save it as a decimal part of existing triple element such as error. In this case, we
use float rather than integer to represent it. However, even by this way, we still cannot
record every occurrence of an item. In order to save space, we sum all of time
information of its occurrence, and then save it as a subpart of the error element.

Now the problem becomes how to express the time information of an occurrence
of an item. There are many ways to do that. A simple one is that we use the
occurrence order to represent the timestamp of each item arrival. For example, the
timestamp of the first item in the stream is 1, and second is 2, and so on. In this way,
since the length of stream increases continually, the sum of timestamp may become
very big. After fractionization , it may become very small. To prevent this problem,
before fractionization , we can do logarithm computation such as natural logarithm.
Taking natural logarithm as an example, in order to transform the sum of timestamp
into a decimal, we can get the inverse of this number. So the sum of time stamp
should be greater than one. As a result, if we use natural logarithm computation, the
time stamp of the first item in the stream could be 3.

In sum, we could use the following formula (1) to record the time information of a
monitored item (ei, counti, errori):

)ln(

1

1
∑

=

+=
icount

j

ii

jtimestamp
errorerror

(1)

Besides the linear sum of the timestamp information of an item’s each monitored
arrival, we can also record the square sum of the timestamp information by a similar
way as shown in formula (2). Here, we put the time information in the item element,
and the timestamp of an item’s arrival can use the natural logarithmic value of its
occurrence order. For example, the timestamp of the first item in a stream is ln(3).

)ln(
1

2

1

∑
=

+=
icount

j

ii

jtimestamp

ee

(2)

2.3 Algorithm: SSTime

To show the effectiveness of using item’s time information, we integrate the time
keeping and using method with the space-saving algorithm [2]. The algorithm called
SSTime is outlined in Fig.1.

488 H. Liu et al.

This algorithm is similar to space-saving. There are two differences between them.
The first is that SSTime records not only the count and error information of an item,
but also its time information. In Fig. 1, we use formula (1) to record the time
information (line 6-8 and line 14). We can also use both formulae (1) and (2) to
record more information about time. When an item is pruned from the memory, i.e., it
is not monitored currently, its time information is lost at the same time (line 13-15).
We can also record this information in the item that replaces it. The second difference
is that when choosing the pruning item, SSTime takes time into consideration. Among
all of items with the same (count + error), where error means the integer part of the
counter’s error element, the “oldest” item is chosen to prune first. To judge which
item is old is not an easy job. In this algorithm, we use a straightforward method. The
smaller the sum of timestamps of an item is, the older the item is. This method is
shown in formula (3). We can also use some complex method, which will be
discussed in the next section.

)(int)(maxarg iicandidateep errorerrore i −= ∈ (3)

Fig. 1. Algorithm SSTime. This algorithm is an extending of the algorithm space-saving by
incorporating time information of items to it.

With the information maintained by this algorithm, at any point of time, a query
could be submitted to output all of the frequent items according to a user-specified
minsup, or to output k most frequent items when the user gives the value of k. The
method to fulfill these two kinds of queries is the same as given in space-saving, and
we do not give them here due to the space limitation. This is the same for the other
two algorithms which will be described in the following sections.

Algorithm: SSTime(m counters, stream D)
1 timestamp=2;
2 For each item, ei, in D {
3 timestamp++;
4 If ei is monitored by counter (ei, counti, errori) {
5 counti= counti+1;
6 temp=exp(1/(errori-(int)errori));
7 temp=temp+timestamp;
8 errori=(int)errori+1/ln(temp);
9 }
10 else {
11 candidate={ej | ej has the least value of min=(count+(int)error)}
12 Let ep be the “oldest” item among items in candidate
13 Replace ep with ei.
14 errori= min+1/ln(timestamp);
15 The counter for ei becomes (ei, 1, errori)
16 }
17 }

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 489

3 Error-Adaptive Pruning Method and Algorithm

3.1 Error-Adaptive Pruning Method

As discussed in section 1, using the pruning method proposed in space-saving, most
of the frequency counts maintained in memory have only one guaranteed frequency
count, whereas they have the highest estimated error. In other words, most of them are
very untrustworthy, and the estimation error as a whole is high. In order to improve
this, we propose a new pruning method, called error-adaptive.

The pruning method used in space-saving is that whenever an existing monitored
item needs to be pruned, one of the items (we call them candidate items) with the
minimum estimated count, i.e. (count + error), is selected. The problem of this
method is that among these candidate items, some have very high guaranteed counts,
and others have only one guaranteed count. Treating them equally during pruning will
lead to high estimation error. Therefore, in our new pruning method, we try to treat
them differently, and in the meantime, we need to guarantee the error rate and high
recall and precision. This method is shown in Definition 2.

Definition 1. (pruning point N) A time point is called a pruning point if at this time
point, a new coming item in data stream cannot find a counter to monitor its
frequency count. Let the current length of the stream is N, then this pruning point is
called pruning point N.

Definition 2. (error-adaptive pruning method) Suppose user-specified error rate is ε,
at pruning point N. Let ecounti be the estimated count, (counti + errori) for each
monitored item ei. The error-adaptive pruning method selects all of items ej satisfying
both of the following conditions as candidate items:

1) ecountj ≤ N/m where m= ⎡1/ε⎤
2) countj=min(counti) i=1, 2, …, m

At pruning point N, the Nth item, en, of the stream comes, and one of the candidate
items is selected. Suppose the counter for the selected item is (ep, countp, errorp). Then
after pruning, this counter becomes (en, 1, countp+ errorp) and is used to monitor en.

Using error-adaptive pruning method, we have the following lemmas.

Lemma 1. Let N be the current length of a data stream, then at any time point the
following equation (4) holds.

∑∀
+=

monitoredisei
ii

i
errorcountN

|
)(

(4)

Proof. Each item arrival in data stream D only increases one counter’s count by 1.
This is obviously true when this item is currently monitored. Even when it is not
monitored, it will replace one existing item. The counter for the existing item will be
used to monitor the new arrival item. This counter’s original count and error will be
saved to error and its count will be set to 1. So the count of old arrival is kept, and the
new arrival is also recorded. Hence, at any time point, the summation of any counter’s
count and error equals the number of item arrivals currently in data stream.

490 H. Liu et al.

Lemma 2. At any pruning point N, there is always at least one candidate item that can
be found to prune.

Proof. Lemma 1 means at any pruning point there is at least one monitored item
satisfying (count + error) ≤ N/m. The proof is by contradiction. Assume every item
monitored has an estimated count > N/m, then the sum of the estimated counts of m
counters must satisfy: sum(counti + errori) > N/m*m = N, which is contradictory to
Lemma 1.

Lemma 3. Using error-adaptive pruning method, the frequency count estimation error
rate for any item is not greater than ε.

Proof. Items can be classified into two categories: items that are monitored currently,
and items that are not monitored currently. For those monitored, if it is monitored
before all of the counters are used up and have not been pruned yet, its estimation
error is zero, which is obviously less than ε. If it is monitored at the pruning point N
by replacing a monitored item, then its error should be less than or equal to Nε
according to definition 2. That is to say, its error rate (error/N) is not greater than ε.
For those not monitored, we regard its frequency count zero. Suppose it is last pruned
at the pruning point N, then according to definition 2, before its pruning, the sum of
its count and error (i.e., count + error) must be less than or equal to Nε. Since its
estimated count is zero, the maximum error is (count + error), which is not greater
than Nε. Therefore, the lemma also holds for this case.

Using this error-adaptive pruning method for mining task given in section 2.1, the
output will only include false positive, no false negative. This is already proven in
algorithm space-saving. In space-saving, at every pruning point, the error for the new
coming item is overestimated as the minimum estimated count, which is min(count +
error). By our method, the error estimated is no less than min(count + error), so it is
also an overestimation. Therefore, there is only false positive among output frequency
count. This is also demonstrated by comprehensive experimental study results.

Based on this error-adaptive pruning method, we propose two algorithms, Adaptive
and AdaTime, for finding frequent items and top-k frequent items.

3.2 Algorithm: Adaptive

Adative is the algorithm we design for finding frequent items and top-k frequent items
based on error-adaptive pruning method. It is depicted in Fig.2.

In this algorithm we do not consider time information. Based on user-specified
error rate ε, we use m (=1/ε) counters to monitor items in stream D. When a new item
arrives in the stream, if it is currently monitored, its count is increased by one (lines 5-
6). If it is a pruning candidate, we delete it from the candidate set (line 7). If it is not
monitored and there is no candidate item in candidate set for pruning, a function,
Getcandidate(), is called to select candidate items from all of counters based on error-
adaptive pruning method described in Definition 2 (lines 13-14). Then, one candidate
item is randomly picked to prune and make its counter available to the new item (line
15). If it is not monitored, but the candidate set is not empty, we choose one item
from the candidates to prune instead of selecting pruning item from all of the counters
again (line 15). By doing this, we could save time without affecting error rate. The
items in candidate are selected during a former pruning point, say N. At that point,

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 491

each of them satisfies (count + error) ≤ Nε. Suppose the current pruning point is M,
(M > N), then items in candidate satisfy (count + error) ≤ Nε ≤ Mε too. After pruning
an existing item, its counter is incremented and used to monitor the new item (lines
16-18).

Algorithm: Adaptive(m counters, stream D)
1 n = 0;
2 candidate={};
3 for each item, ei, in stream D {
4 n = n+1;
5 if ei is monitored by counter (ei , counti, errori) {
6 counti = counti +1;
7 If ei is in candidate, erase it from candidate
8 }
9 else {
10 if there is a free counter to use
11 New counter (ei , 1, 0) for ei;
12 else {
13 if candidate is empty
14 candidate=GetCandidate(m, n);
15 Let ep be one of the items in candidate
16 Replace ep with ei
17 errori=countp+errorp;
18 The counter for ei becomes (ei, 1, errori)
19 }
20 }
21 }

Function GetCandidate(m counters,
n current length of stream D)
1 min=n;
2 for each item, ei, monitored currently {
3 if (counti+(int)errori <= n/m) {
4 if (counti = =min) then
5 put ei in candidate;
6 else if counti <min {
7 min = counti;
8 empty candidate;
9 put ei in candidate;

10 }
11 }
12 }
13 return candidate;

Fig. 2. This is the main procedure of algorithm Adaptive

The function GetCandidate(m, n) is called to find all of the candidate items from m
counters at pruning point n. This is done by traversing from counters with the
minimum estimated count, (counti + errori). We use the same data structure used in
Space-saving. All of the counters with the same estimated count are attached to a
bucket, and all of the buckets are linked together according to the estimated count
value. Therefore, when traversing buckets from the one with the lowest estimated
count, once this value is greater than nε, we could stop further traverse.

3.3 Algorithm: AdaTime

To show the effect of the time information to the error-adaptive pruning method, we
propose another algorithm, AdaTime, which is outlined in Fig. 3.

The major difference between algorithms Adaptive and AdaTime is shown in lines
7, 15 and 18. In line 7, we record time information together with count and error
information in the counter. We can use the same method used in algorithm SSTime.
Here we introduce another way. Suppose the timestamp for the nth arrival is ln(n+2),
then we could put linear sum of each timestamp of this item to error, and put the
square sum of each timestamp in the key of the item. We use the fractionization
method introduced in section 2 to do that. In line 15, instead of randomly picking one
item from the candidate set, we choose the relatively old item to prune. To decide
which item is older, we can use the linear sum of the timestamps and square sum of
the timestamps to compute a distance between the occurrences of this item and the

492 H. Liu et al.

new coming item. Due to the space limitation, we do not give the further detail of this
method. The larger the distance is, the older the item is. Similar to line 7, in line 18, at
the pruning point, time information is also recorded.

Fig. 3. Algorithm AdaTime is an algorithm using error-adaptive pruning method, and it also
considers time information when do pruning

4 A Performance Study

4.1 Measures

In order to evaluate performance of an algorithm completely, besides the measures
such as recall, precision, space, and time, we propose three other measures to evaluate
the effectiveness of various pruning method.

Let |I| be the number of distinct items in a data stream, and m be the number of
counters used to maintain frequency counts for these items. The first measure is the
average absolute error of all items, or aError in short. It is defined in formula (5).
The second is the average absolute error of maintained counts, or mError in short, as
shown in formula (5).

||

||

1

I

counttruecount
aError

I

i

ii∑
=

−
=

m

counttruecount
mError monitoredei

ii∑ −
= (5)

The third is the average absolute error of maintained error, or eError in short, as
shown in formula (6).

m

counttruecounterror
eError monitoredei

iii)(∑ −−
= (6)

Algorithm: AdaTime(m counters, stream D)
1 n = 0;
2 candidate={};
3 for each item, ei, in stream D {
4 n = n+1;
5 if ei is monitored by counter(ei , counti, errori) {
6 counti = counti +1;
7 Record timestamp information;
8 If ei is in candidate, erase it from candidate
9 }
10 else {
11 if counters# < m, create a new counter for ei;
13 else {
14 if candidate is empty, candidate=GetCandidate(m, n);
15 Let ep be “oldest” items in candidate
16 Replace ep with ei by counter (ei, 1, errori)

17 errori=countp+(int) errorp;
18 Record timestamp information;
19 }
20 }
21 }

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 493

We have implemented the three algorithms proposed in this paper in C language
and run them on a Pentium IV 2GHz IBM Thinkpad laptop with 1.5G memory
running Window 2003 Server system. For algorithm SSTime and AdaTime, when we
implement them, we have tried several different methods to record and use time
information. But due to space limitation, we only report the result of the simple
method as shown in Fig. 1.

We use synthetic data generated by following a Zipf-like distribution [8].

4.2 Varying the Data Skew

In this set of experiments, we change the skew factor of the data stream, and measure
the recall, precision, aError, mError, eError, and time. We fix the number of distinct
items to be 100,000, the length of stream to be 10,000,000, and the error rate to be
0.0001. We compare the performance of our algorithms with space-saving which
proves to have better performance than other algorithms in [2], and is implemented to
our best knowledge. Since we use the data structure as used in space-saving, the space
used by our algorithms is similar to space-saving. We vary the skew factor from 0.5
to 2, and the results are shown in Fig. 4 and 5.

From Fig. 4 (a) and (b) and Fig. 5 (a) we can see that algorithms Adaptive and
AdaTime produce better error results than space-saving and SSTime. Furthermore,
although it is hard to see from these figures, algorithm AdaTime is slightly better than
Adaptive, and SSTime is slightly better than AdaTime.

0

20

40

60

80

100

0.5 1 1.5 2

Zipf

a
E
r
r
o
r
s

SpaceSaving SSTime Adaptive AdaTime

0

50

100

150

200

0.5 1 1.5 2
Zipf

m
E
r
r
o
r

SpaceSaving SSTime Adaptive AdaTime

 (a) (b)

Fig. 4. These two figures show aError and mError for several data streams with length
10000000 and 100000 distinct items. Their skew factors are changed from 0.5 to 2.

0

200

400

600

800

1000

0.5 1 1.5 2

Zipf

e
E
r
r
o
r

SpaceSaving SSTime Adaptive AdaTime

0

300

600

900

1200

1500

0.5 1 1.5 2

Zipf

T
im

e

SpaceSaving SSTime Adaptive AdaTime

(a) (b)

Fig. 5. These two figures show eError and runtime when running four algorithms for four data
streams with length 10000000 and 100000 distinct items. Their skew factors are different.

494 H. Liu et al.

Fig. 5 (b) indicates that among these four algorithms, space-saving is the fastest,
and SSTime is slowest, while Adaptive is better than AdaTime. Since both recording
time information and selecting candidate based on time information take more time, it
is not difficult to understand this result. The reason why SSTime is much slower than
others is that at each pruning point, every item with the min(count + error) is needed
to scan and compare.

4.3 Varying the Query Parameters

In this set of experiments, we fix the number of distinct items to be 100,000, the
length of stream to be 10,000,000, the error rate to be 0.0001, and skew factor to be 1.
We change two parameters, minsup and k, to see the recall, precision. Since this data
set is one of those used in section 4.2, the other measures for this data set remain the
same as given above. The results are depicted in Fig. 6.

One can see from Fig. 6 (a) and (b), for low minsup, Adaptive and AdaTime have
better recall and precision than space-saving and SSTime, whereas AdapTime is better
than Adaptive and SSTime is a little better than space-saving. As the top-k query, the
results for recall are the same as precision, so we do not put the figure here. Fig. 6(c)
shows us that for high k, these algorithms have the same behavior shown in (a)
and (b).

0

0.2

0.4

0.6

0.8

1

0.0005 0.05 0.1 0.2 0.4 1

minsup (*0.01)

r
e
c
a
l
l

Adaptive AdaTime space-saving SSTime

0

0.2

0.4

0.6

0.8

1

0.0005 0.05 0.1 0.2 0.4 1

minsup (*0.01)

p

r

e

c

i

s

i

o

n

Adaptive AdaTime space-saving SSTime

0

0.2

0.4

0.6

0.8

1

50 75 100 150 200 10000

k

p

r

e

c

i

s

i

o

n

Adaptive AdaTime space-saving SSTime

 (a) (b) (c)

Fig. 6. (a) and (b) show the recall and precision of four algorithms respectively as minsup
varies, and (c) shows the precision as k varies

5 Conclusions

We study the problem of maintaining frequency counts for items over data streams in
this paper. We propose to use time information when pruning items, and give a
fractionization method to represent and record the time information without spending
much space. We also propose a new pruning method, error-adaptive pruning, to
improve maintenance accuracy as a whole. Using these two methods, we design and
implement three algorithms, Adaptive, AdaTime, and SSTime, and conduct
comprehensive experiments. Our experimental results show that time information can
improve the maintenance accuracy, but needs more runtime. Our results also indicate
that the new pruning method is effective for improving accuracy as a whole.

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 495

References

1. G. S. Manku and R. Motwani. Approximate Frequency Counts over Data Streams. In Proc.
of 28th Intl. Conf. on Very Large Data Bases, pages 346 – 357, 2002.

2. A. Metwally, D. Agrawal, and A. El Abbadi. Efficient. Computation of Frequent and Top-k
Elements in Data Streams. In Proceedings of the 10th ICDT. International Conference on
Database Theory, pages. 398–412, 2005.

3. G. Cormode and S.Muthukrishnan. What’s Hot and What’s Not: Tracking Most Frequent
Items Dynamically. In Proc. Of 22nd ACM Symposium on Principles of Database Systems
(PODS), pages 296 – 306, 2003.

4. E. Demaine, A. Lopez-Ortiz, and J. Munro. Frequency Estimation of Internet Packet
Streams with Limited Space. In Proc. of 10th Annual European Symposium on Algorithms,
2002.

5. C. Jin, W. Qian, C. Sha, J. Yu, and A. Zhou. Dynamically Maintaining Frequent Items Over
a Data Stream. In Proc. Of CIKM, 2003.

6. J. Yu, Z. Chong, H. Lu, and A. Zhou. False Positive or False Negative: Mining Frequent
Item Sets from High Speed Transactional Data Streams. In Proc. of 30th VLDB, pages 204–
215, 2004.

7. M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent Items in Data Streams. In
Proc. of the Int. Colloquium on Automata, Languages and Programming (ICALP), pages
693 – 703, 2002.

8. D. E. Knuth. The Art of Programming. Addison-Wesley, 1973.

	Introduction
	Keeping and Using Time Information
	Problem Definition
	$Fractionization:$ A Method to Keep Time Information
	Algorithm: SSTime

	Error-Adaptive Pruning Method and Algorithm
	$Error-Adaptive$ Pruning Method
	Algorithm: $Adaptive$
	Algorithm: $AdaTime$

	A Performance Study
	Measures
	Varying the Data Skew
	Varying the Query Parameters

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

