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Abstract. Maintaining frequency counts for items over data stream has a wide 
range of applications such as web advertisement fraud detection. Study of this 
problem has attracted great attention from both researchers and practitioners. 
Many algorithms have been proposed. In this paper, we propose a new method, 
error-adaptive pruning method, to maintain frequency more accurately. We 
also propose a method called fractionization to record time information together 
with the frequency information. Using these two methods, we design three 
algorithms for finding frequent items and top-k frequent items. Experimental 
results show these methods are effective in terms of improving the maintenance 
accuracy. 

1   Introduction 

With the emergence of data stream applications, data mining for data streams has 
attracted great attention from both researchers and practitioners. Among the mining 
tasks for stream data, maintaining frequency counts over data streams is a basic 
mining problem with a wide range of applications, such as web advertisement fraud 
detection and network flow identification[1][2].  A number of algorithms have been 
proposed to tackle this problem [1] [2] [3] [4] [5] [6] [7] [8]. A comprehensive 
introduction to these algorithms is given in reference [2]. Most of these algorithms are 
designed to maintain a set of approximate frequency counts satisfying an error 
requirement within a theoretical memory bound, and they are mostly false-positive 
oriented. Usually the error bound is given by an end user. To satisfy this error bound, 
different algorithms use different methods to consume as less memory as possible. 
Among these algorithms, an algorithm called space-saving [2] uses an integrated 
approach for finding both frequent items and top-k frequent items. Both theoretical 
analysis and experimental results show that this method achieves a better performance 
in terms of accuracy and memory usage compared to other algorithms, such as 
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GroupTest [3], FREQUENT [4], CountSketch [7] and Probabilistic-InPlace [4]. 
However, after studying these existing algorithms, we have following observations: 

• Timestamp information is ignored at processing each data arrival.  Stream data are 
temporally ordered, fast changing, massive, and potentially infinite sequences of 
data. So time dimension is an important point of view to look at the data. Also, 
people are usually interested in recent changes of the data streams. However, as far 
as we know, all of these existing algorithms for approximating the frequency 
counts do not take this kind of information into account.  

• Precision and recall may not be enough to measure the performance of an 
algorithm. Many algorithms use precision and recall as important measures to 
judge if an algorithm is good. However, precision and recall depend on minimum 
support parameter (minsup in short) and top-k parameter (k in short). For high 
minsup or low k value in a skewed data stream, they are usually 1. From these two 
measurements, it is hard for us to know how well an algorithm does for 
maintaining the frequency counts as a whole. For example, if we use 10000 
counters to monitor frequency counts of items over a data stream with length of 
100,000 and 10000 distinct items.  More than 50% of the frequency counts 
maintained by space-saving are 1, and in the meantime they also have the highest 
estimation error among all the counts maintained, while the exact answer tells us 
that only 4% of these counts are 1. But this aspect is not easy to be seen from 
precision and recall. 

In this paper we focus on addressing these two issues described above. We propose 
three algorithms: SSTime, Adaptive, and AdaTime. Following are some contributions 
made in this paper: 

• We propose to make use of time dimension information when designing the 
pruning strategy. In order to do that, we propose a method, called fractionization , 
to compress timestamp of each arrival for an item into existing count and error 
data. We also propose several methods to utilize this information to achieve better 
pruning result.  

• We propose to use the sum of maintained error and the error of estimation error as 
well as the sum of all errors to measure the quality of mining algorithm. In order 
to improve the quality of mining results in terms of these measurements, we 
develop a pruning strategy, called error-adaptive pruning, to prune items 
adaptively so that the error bound can be achieved and in the meantime a low 
maintained error can also be achieved. 

• We develop and implement an algorithm named Adaptive to use error-adaptive 
pruning technique to maintain frequency counts over data streams. Comprehensive 
experimental studies indicate that this algorithm can achieve better performance. 

• We design and implement two algorithms, SSTime and AdaTime, to extend the 
existing space-saving algorithm and the new algorithm Adaptive by taking the time 
dimension into consideration. Experimental results show that time information is 
effective in terms of improving the mining quality. 

The remainder of the paper is organized as follows. Section 2 describes how to 
keep and use time dimension, and give the description of algorithm SSTime. Section 3 
describes the error-adaptive pruning technique, and presents two new algorithms 
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Adaptive and AdaTime. Section 4 gives three measures as a complement to existing 
measures for performance study and presents experimental results, and section 5 
concludes the paper. 

2   Keeping and Using Time Information 

In this section, we describe our method to consider time information while 
summarizing the dynamic data stream. 

2.1   Problem Definition 

Let I be a set of single items, I = {e1, e2, …, en}. Given a single item stream D of size 
N, an item ei is called frequent if its frequency count, fi, in this stream exceeds a user-
specified support ⎡ϕN⎤, where ϕ is a user-specified threshold, called minimum 
support (minsup). An item ej is called a top-k frequent item if its frequency count is 
among the k highest frequencies, where k is specified by user.  

For a data stream application, the exact solution of finding all of the frequent items 
or finding all of the top-k frequent items is usually impractical due to time and space 
limitation. Therefore, the problem becomes finding an approximate set of frequent 
items and top-k items. To solve this problem, except for the parameter minsup and k, 
an error rate, ε, is also given by a user. With the relaxation of the original problem, the 
task of mining frequent items becomes finding all of frequent items whose estimated 
frequency counts exceeds ⎡ϕN⎤, where the difference between the estimated counts 
and their true counts is at most εN. Similarly, the task of finding top-k frequent items 
becomes finding k items with highest estimated frequency counts, where the 
difference between the estimated counts and their true counts is also at most εN.  

2.2   Fractionization: A Method to Keep Time Information 

Existing algorithms for mining frequent items in data streams can be categorized into 
two kinds of techniques: counter-based and sketch-based. Counter-based method use 
an individual counter for each item monitored. In this paper we only discuss this 
method.  

Due to the space limitation and the big size of the stream, usually only a subset of 
all of items can be monitored in the main memory. Suppose we use m counters in 
memory to keep frequency counts, then at any point of time, only m distinct items are 
monitoring.  

Almost all of the counter-based algorithms use the following method to maintain 
item’s frequency. If the newcome item is currently monitored, its frequency is 
increased. Otherwise, an item currently monitored is pruned to make room for the 
new item. Although these existing algorithms are different from each other in terms of 
pruning method, they all neglect the time information of each item arrival. In real 
applications, items in data stream are changing as time changes. For example, old 
frequent items may become infrequent as time goes on. Therefore, a straightforward 
way to use time information is that whenever pruning is required, among candidates, 
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we choose old one instead of recent one to prune. But how can we judge which one is 
older than others?  

The answer to this question depends on how time information for every arrival of 
items is recorded. If we have enough space, it is easy to record time information. But 
in order to achieve high accuracy, we need to use as less memory as possible for each 
counter. Therefore, how to put time information into existing information that a 
counter keeps is important. 

Suppose for each counter we maintain three pieces of information for an item: key, 
guaranteed count, and maximum error, which can be represented as a triple (item, 
count, error), where each element of this triple is usually saved as an integer. Our 
method to save time information of each item arrival is called Fractionization , which 
means that we first transform the information of each item into a decimal fraction, and 
then save it as a decimal part of existing triple element such as error. In this case, we 
use float rather than integer to represent it. However, even by this way, we still cannot 
record every occurrence of an item. In order to save space, we sum all of time 
information of its occurrence, and then save it as a subpart of the error element.  

Now the problem becomes how to express the time information of an occurrence 
of an item. There are many ways to do that. A simple one is that we use the 
occurrence order to represent the timestamp of each item arrival. For example, the 
timestamp of the first item in the stream is 1, and second is 2, and so on. In this way, 
since the length of stream increases continually, the sum of timestamp may become 
very big. After fractionization , it may become very small. To prevent this problem, 
before fractionization , we can do logarithm computation such as natural logarithm. 
Taking natural logarithm as an example, in order to transform the sum of timestamp 
into a decimal, we can get the inverse of this number. So the sum of time stamp 
should be greater than one. As a result, if we use natural logarithm computation, the 
time stamp of the first item in the stream could be 3.   

In sum, we could use the following formula (1) to record the time information of a 
monitored item (ei, counti, errori): 
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Besides the linear sum of the timestamp information of an item’s each monitored 
arrival, we can also record the square sum of the timestamp information by a similar 
way as shown in formula (2). Here, we put the time information in the item element, 
and the timestamp of an item’s arrival can use the natural logarithmic value of its 
occurrence order. For example, the timestamp of the first item in a stream is ln(3). 
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2.3   Algorithm: SSTime 

To show the effectiveness of using item’s time information, we integrate the time 
keeping and using method with the space-saving algorithm [2]. The algorithm called 
SSTime is outlined in Fig.1. 
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This algorithm is similar to space-saving. There are two differences between them. 
The first is that SSTime records not only the count and error information of an item, 
but also its time information. In Fig. 1, we use formula (1) to record the time 
information (line 6-8 and line 14). We can also use both formulae (1) and (2) to 
record more information about time. When an item is pruned from the memory, i.e., it 
is not monitored currently, its time information is lost at the same time (line 13-15). 
We can also record this information in the item that replaces it. The second difference 
is that when choosing the pruning item, SSTime takes time into consideration. Among 
all of items with the same (count + error), where error means the integer part of the 
counter’s error element, the “oldest” item is chosen to prune first. To judge which 
item is old is not an easy job. In this algorithm, we use a straightforward method. The 
smaller the sum of timestamps of an item is, the older the item is. This method is 
shown in formula (3). We can also use some complex method, which will be 
discussed in the next section. 

)(int)(maxarg iicandidateep errorerrore i −= ∈  (3) 

 

Fig. 1. Algorithm SSTime. This algorithm is an extending of the algorithm space-saving by 
incorporating time information of items to it. 

With the information maintained by this algorithm, at any point of time, a query 
could be submitted to output all of the frequent items according to a user-specified 
minsup, or to output k most frequent items when the user gives the value of k. The 
method to fulfill these two kinds of queries is the same as given in space-saving, and 
we do not give them here due to the space limitation. This is the same for the other 
two algorithms which will be described in the following sections. 

Algorithm: SSTime( m counters, stream D) 
1 timestamp=2; 
2 For each item, ei, in D { 
3  timestamp++; 
4  If ei is monitored by counter (ei, counti, errori) { 
5   counti= counti+1; 
6  temp=exp(1/(errori-(int)errori)); 
7  temp=temp+timestamp; 
8  errori=(int)errori+1/ln(temp); 
9  } 
10  else { 
11   candidate={ej | ej has the least value of min=(count+(int)error)} 
12   Let ep be the “oldest” item among items in candidate 
13   Replace ep with ei. 
14   errori= min+1/ln(timestamp); 
15   The counter for ei becomes (ei, 1, errori) 
16  } 
17 } 
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3   Error-Adaptive Pruning Method and Algorithm 

3.1   Error-Adaptive Pruning Method 

As discussed in section 1, using the pruning method proposed in space-saving, most 
of the frequency counts maintained in memory have only one guaranteed frequency 
count, whereas they have the highest estimated error. In other words, most of them are 
very untrustworthy, and the estimation error as a whole is high. In order to improve 
this, we propose a new pruning method, called error-adaptive. 

The pruning method used in space-saving is that whenever an existing monitored 
item needs to be pruned, one of the items (we call them candidate items) with the 
minimum estimated count, i.e. (count + error), is selected. The problem of this 
method is that among these candidate items, some have very high guaranteed counts, 
and others have only one guaranteed count. Treating them equally during pruning will 
lead to high estimation error. Therefore, in our new pruning method, we try to treat 
them differently, and in the meantime, we need to guarantee the error rate and high 
recall and precision. This method is shown in Definition 2.  

Definition 1. (pruning point N) A time point is called a pruning point if at this time 
point, a new coming item in data stream cannot find a counter to monitor its 
frequency count. Let the current length of the stream is N, then this pruning point is 
called pruning point N. 

Definition 2. (error-adaptive pruning method) Suppose user-specified error rate is ε, 
at pruning point N. Let ecounti be the estimated count, (counti + errori) for each 
monitored item ei.  The error-adaptive pruning method selects all of items ej satisfying 
both of the following conditions as candidate items: 

1) ecountj ≤ N/m  where m= ⎡1/ε⎤ 
2) countj=min(counti)  i=1, 2, …, m 

At pruning point N, the Nth item, en, of the stream comes, and one of the candidate 
items is selected. Suppose the counter for the selected item is (ep, countp, errorp). Then 
after pruning, this counter becomes (en, 1, countp+ errorp) and is used to monitor en.  

Using error-adaptive pruning method, we have the following lemmas. 

Lemma 1. Let N be the current length of a data stream, then at any time point the 
following equation (4) holds. 
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Proof.  Each item arrival in data stream D only increases one counter’s count by 1. 
This is obviously true when this item is currently monitored. Even when it is not 
monitored, it will replace one existing item. The counter for the existing item will be 
used to monitor the new arrival item. This counter’s original count and error will be 
saved to error and its count will be set to 1. So the count of old arrival is kept, and the 
new arrival is also recorded. Hence, at any time point, the summation of any counter’s 
count and error equals the number of item arrivals currently in data stream.   



490 H. Liu et al. 

Lemma 2. At any pruning point N, there is always at least one candidate item that can 
be found to prune. 

Proof.  Lemma 1 means at any pruning point there is at least one monitored item 
satisfying (count + error) ≤ N/m.  The proof is by contradiction. Assume every item 
monitored has an estimated count > N/m, then the sum of the estimated counts of m 
counters must satisfy: sum(counti + errori) > N/m*m = N, which is contradictory to 
Lemma 1. 

Lemma 3. Using error-adaptive pruning method, the frequency count estimation error 
rate for any item is not greater than ε. 

Proof. Items can be classified into two categories: items that are monitored currently, 
and items that are not monitored currently. For those monitored, if it is monitored 
before all of the counters are used up and have not been pruned yet, its estimation 
error is zero, which is obviously less than ε. If it is monitored at the pruning point N 
by replacing a monitored item, then its error should be less than or equal to Nε 
according to definition 2. That is to say, its error rate (error/N) is not greater than ε. 
For those not monitored, we regard its frequency count zero. Suppose it is last pruned 
at the pruning point N, then according to definition 2, before its pruning, the sum of 
its count and error (i.e., count + error)  must be less than or equal to Nε. Since its 
estimated count is zero, the maximum error is (count + error), which is not greater 
than Nε.  Therefore, the lemma also holds for this case.  

Using this error-adaptive pruning method for mining task given in section 2.1, the 
output will only include false positive, no false negative. This is already proven in 
algorithm space-saving. In space-saving, at every pruning point, the error for the new 
coming item is overestimated as the minimum estimated count, which is min(count + 
error).  By our method, the error estimated is no less than min(count + error), so it is 
also an overestimation. Therefore, there is only false positive among output frequency 
count. This is also demonstrated by comprehensive experimental study results. 

Based on this error-adaptive pruning method, we propose two algorithms, Adaptive 
and AdaTime, for finding frequent items and top-k frequent items. 

3.2   Algorithm: Adaptive 

Adative is the algorithm we design for finding frequent items and top-k frequent items 
based on error-adaptive pruning method. It is depicted in Fig.2. 

In this algorithm we do not consider time information. Based on user-specified 
error rate ε, we use m (=1/ε) counters to monitor items in stream D. When a new item 
arrives in the stream, if it is currently monitored, its count is increased by one (lines 5-
6). If it is a pruning candidate, we delete it from the candidate set (line 7). If it is not 
monitored and there is no candidate item in candidate set for pruning, a function, 
Getcandidate(), is called to select candidate items from all of counters based on error-
adaptive pruning method described in Definition 2 (lines 13-14). Then, one candidate 
item is randomly picked to prune and make its counter available to the new item (line 
15). If it is not monitored, but the candidate set is not empty, we choose one item 
from the candidates to prune instead of selecting pruning item from all of the counters 
again (line 15). By doing this, we could save time without affecting error rate. The 
items in candidate are selected during a former pruning point, say N. At that point, 
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each of them satisfies (count + error) ≤ Nε. Suppose the current pruning point is M, 
(M > N), then items in candidate satisfy (count + error) ≤ Nε ≤ Mε too. After pruning 
an existing item, its counter is incremented and used to monitor the new item (lines 
16-18). 

 

Algorithm: Adaptive(m counters, stream D)
1   n = 0;  
2   candidate={};
3   for each item, ei, in stream D {
4 n = n+1;
5 if ei is monitored by counter (ei , counti, errori) {
6 counti = counti +1;
7 If ei is in candidate, erase it from candidate 
8 } 
9 else { 
10  if there is a free counter to use 
11  New counter (ei , 1, 0) for ei;
12  else { 
13 if candidate is empty 
14  candidate=GetCandidate(m, n);
15 Let ep be one of the items in candidate 
16  Replace ep with ei
17   errori=countp+errorp;
18   The counter for ei becomes (ei, 1, errori)
19 }
20 }
21 }

Function GetCandidate(m counters, 
n current length of stream D)
1 min=n;
2 for each item, ei, monitored currently {
3 if (counti+(int)errori <= n/m) {
4 if (counti = =min) then
5   put ei in candidate;
6 else if counti <min {
7   min = counti;
8    empty candidate;
9   put ei in candidate;

10 }
11 }
12 }
13 return candidate;

 

Fig. 2. This is the main procedure of algorithm Adaptive 

The function GetCandidate(m, n) is called to find all of the candidate items from m 
counters at pruning point n. This is done by traversing from counters with the 
minimum estimated count, (counti + errori). We use the same data structure used in 
Space-saving.  All of the counters with the same estimated count are attached to a 
bucket, and all of the buckets are linked together according to the estimated count 
value. Therefore, when traversing buckets from the one with the lowest estimated 
count, once this value is greater than nε, we could stop further traverse. 

3.3   Algorithm: AdaTime 

To show the effect of the time information to the error-adaptive pruning method, we 
propose another algorithm, AdaTime, which is outlined in Fig. 3. 

The major difference between algorithms Adaptive and AdaTime is shown in lines 
7, 15 and 18. In line 7, we record time information together with count and error 
information in the counter. We can use the same method used in algorithm SSTime. 
Here we introduce another way. Suppose the timestamp for the nth arrival is ln(n+2), 
then we could put linear sum of each timestamp of this item to error, and put the 
square sum of each timestamp in the key of the item. We use the fractionization 
method introduced in section 2 to do that. In line 15, instead of randomly picking one 
item from the candidate set, we choose the relatively old item to prune. To decide 
which item is older, we can use the linear sum of the timestamps and square sum of 
the timestamps to compute a distance between the occurrences of this item and the 
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new coming item. Due to the space limitation, we do not give the further detail of this 
method. The larger the distance is, the older the item is. Similar to line 7, in line 18, at 
the pruning point, time information is also recorded. 

Fig. 3. Algorithm AdaTime is an algorithm using error-adaptive pruning method, and it also 
considers time information when do pruning 

4   A Performance Study 

4.1   Measures 

In order to evaluate performance of an algorithm completely, besides the measures 
such as recall, precision, space, and time, we propose three other measures to evaluate 
the effectiveness of various pruning method.   

Let |I| be the number of distinct items in a data stream, and m be the number of 
counters used to maintain frequency counts for these items. The first measure is the 
average absolute error of all items, or aError in short. It is defined in formula (5). 
The second is the average absolute error of maintained counts, or mError in short, as 
shown in formula (5). 
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The third is the average absolute error of maintained error, or eError in short, as 
shown in formula (6). 
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Algorithm: AdaTime(m counters, stream D) 
1   n = 0;  
2   candidate={}; 
3  for each item, ei, in stream D { 
4 n = n+1; 
5 if ei is monitored by counter(ei , counti, errori) {  
6 counti = counti +1; 
7 Record timestamp information; 
8 If ei is in candidate, erase it from candidate 
9 } 
10 else { 
11  if counters# < m, create a new counter  for ei; 
13  else { 
14   if candidate is empty, candidate=GetCandidate(m, n); 
15  Let ep be “oldest” items in candidate 
16  Replace ep with ei by counter (ei, 1, errori) 

17   errori=countp+(int) errorp; 
18   Record timestamp information; 
19  } 
20  } 
21 } 
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We have implemented the three algorithms proposed in this paper in C language 
and run them on a Pentium IV 2GHz IBM Thinkpad laptop with 1.5G memory 
running Window 2003 Server system. For algorithm SSTime and AdaTime, when we 
implement them, we have tried several different methods to record and use time 
information. But due to space limitation, we only report the result of the simple 
method as shown in Fig. 1.  

We use synthetic data generated by following a Zipf-like distribution [8]. 

4.2   Varying the Data Skew 

In this set of experiments, we change the skew factor of the data stream, and measure 
the recall, precision, aError, mError, eError, and time. We fix the number of distinct 
items to be 100,000, the length of stream to be 10,000,000, and the error rate to be 
0.0001. We compare the performance of our algorithms with space-saving which 
proves to have better performance than other algorithms in [2], and is implemented to 
our best knowledge. Since we use the data structure as used in space-saving, the space 
used by our algorithms is similar to space-saving. We vary the skew factor from 0.5 
to 2, and the results are shown in Fig. 4 and 5. 

From Fig. 4 (a) and (b) and Fig. 5 (a) we can see that algorithms Adaptive and 
AdaTime produce better error results than space-saving and SSTime. Furthermore, 
although it is hard to see from these figures, algorithm AdaTime is slightly better than 
Adaptive, and SSTime is slightly better than AdaTime. 
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Fig. 4. These two figures show aError and mError for several data streams with length 
10000000 and 100000 distinct items. Their skew factors are changed from 0.5 to 2. 

0

200

400

600

800

1000

0.5 1 1.5 2

Zipf

e
E
r
r
o
r

SpaceSaving SSTime Adaptive AdaTime

       

0

300

600

900

1200

1500

0.5 1 1.5 2

Zipf

T
im

e

SpaceSaving SSTime Adaptive AdaTime

 
(a)         (b) 

Fig. 5. These two figures show eError and runtime when running four algorithms for four data 
streams with length 10000000 and 100000 distinct items. Their skew factors are different. 
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Fig. 5 (b) indicates that among these four algorithms, space-saving is the fastest, 
and SSTime is slowest, while Adaptive is better than AdaTime. Since both recording 
time information and selecting candidate based on time information take more time, it 
is not difficult to understand this result. The reason why SSTime is much slower than 
others is that at each pruning point, every item with the min(count + error) is needed 
to scan and compare. 

4.3   Varying the Query Parameters 

In this set of experiments, we fix the number of distinct items to be 100,000, the 
length of stream to be 10,000,000, the error rate to be 0.0001, and skew factor to be 1. 
We change two parameters, minsup and k, to see the recall, precision. Since this data 
set is one of those used in section 4.2, the other measures for this data set remain the 
same as given above. The results are depicted in Fig. 6. 

One can see from Fig. 6 (a) and (b), for low minsup, Adaptive and AdaTime have 
better recall and precision than space-saving and SSTime, whereas AdapTime is better 
than Adaptive and SSTime is a little better than space-saving. As the top-k query, the 
results for recall are the same as precision, so we do not put the figure here. Fig. 6(c) 
shows us that for high k, these algorithms have the same behavior shown in (a)  
and (b). 
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Fig. 6. (a) and (b) show the recall and precision of four algorithms respectively as minsup 
varies, and (c) shows the precision as k varies 

5   Conclusions 

We study the problem of maintaining frequency counts for items over data streams in 
this paper. We propose to use time information when pruning items, and give a 
fractionization method to represent and record the time information without spending 
much space. We also propose a new pruning method, error-adaptive pruning, to 
improve maintenance accuracy as a whole. Using these two methods, we design and 
implement three algorithms, Adaptive, AdaTime, and SSTime, and conduct 
comprehensive experiments. Our experimental results show that time information can 
improve the maintenance accuracy, but needs more runtime. Our results also indicate 
that the new pruning method is effective for improving accuracy as a whole. 
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