
Frequent Closed Sequence Mining
without Candidate Maintenance

Jianyong Wang, Senior Member, IEEE, Jiawei Han, Senior Member, IEEE, and Chun Li

Abstract—Previous studies have presented convincing arguments that a frequent pattern mining algorithm should not mine all

frequent patterns but only the closed ones because the latter leads to not only a more compact yet complete result set but also better

efficiency. However, most of the previously developed closed pattern mining algorithms work under the candidate maintenance-and-

test paradigm, which is inherently costly in both runtime and space usage when the support threshold is low or the patterns become

long. In this paper, we present BIDE, an efficient algorithm for mining frequent closed sequences without candidate maintenance. It

adopts a novel sequence closure checking scheme called BI-Directional Extension and prunes the search space more deeply

compared to the previous algorithms by using the BackScan pruning method. A thorough performance study with both sparse and

dense, real, and synthetic data sets has demonstrated that BIDE significantly outperforms the previous algorithm: It consumes an

order(s) of magnitude less memory and can be more than an order of magnitude faster. It is also linearly scalable in terms of database

size.

Index Terms—Data mining, frequent closed sequences, BI-Directional Extension.

Ç

1 INTRODUCTION

SEQUENTIAL pattern mining, since its introduction in [2],
has become an essential data mining task with broad

applications, including feature selection for sequence
classification [8], [26], mining minimal distinguishing
subsequence patterns [12], mining block correlations in
storage systems [15], finding copy-paste and related bugs in
large-scale software code [16], and mining API usages from
open source repositories [30], [31]. Efficient mining methods
have been studied extensively, including the general
sequential pattern mining [18], [27], [11], [34], [22], [4],
constraint-based sequential pattern mining [9], [23], [25],
top-k closed sequential pattern mining [28], parallel closed
sequential pattern mining [7], frequent episode mining [17],
cyclic association rule mining [19], long sequential pattern
mining in noisy environment [33], and frequent partial
order mining [6], [24].

In recent years, many studies have presented convincing
arguments that for mining frequent patterns (for both
itemsets and sequences), one should not mine all frequent
patterns but the closed ones because the latter leads to not
only a more compact yet complete result set but also better
efficiency [20], [35], [32], [29]. However, unlike mining
frequent itemsets, there are not so many methods proposed
for mining closed sequential patterns. This is partly due to
the complexity of the problem. To the best of our knowledge,

CloSpan is currently the only such algorithm [32]. Like most
of the frequent closed itemset mining algorithms, it follows a
candidate maintenance-and-test paradigm, that is, it needs to
maintain the set of already mined closed sequence candi-
dates that can be used to prune the search space and check if
a newly found frequent sequence is promising to be closed.
Unfortunately, a closed pattern mining algorithm under
such a paradigm has rather poor scalability in the number of
frequent closed patterns because a large number of frequent
closed patterns (or just candidates) will occupy much
memory and lead to large search space for the closure
checking of new patterns, which is usually the case when the
support threshold is low or the patterns become long.

Can we find a way to mine frequent closed sequences
without candidate maintenance? This seems to be a very
difficult task. In this paper, we present a nice solution that
leads to an algorithm, BIDE,1 that efficiently mines the
complete set of frequent closed sequences. In BIDE, we do
not need to keep track of any single historical frequent
closed sequence (or candidate) for a new pattern’s closure
checking, which leads to our proposal of a deep search-
space pruning method and some other optimization
techniques. Our thorough performance study demonstrates
the big success of the algorithm design: BIDE consumes an
order(s) of magnitude less memory and runs over an order
of magnitude faster than the previously developed frequent
(closed) sequence mining algorithms, especially when the
support is low.

The rest of this paper is organized as follows: In Section 2,
we present the problem definition of frequent closed
sequence mining and discuss the related work and our
contributions to this problem. Section 3 is focused on the
BIDE algorithm, mainly introducing the BI-Directional
Extension pattern closure checking mechanism and the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007 1

. J. Wang and C. Li are with the Department of Computer Science and
Technology, Tsinghua University, Beijing, 100084, China.
E-mail: jianyong@tsinghua.edu.cn, Socrates.lee@gmail.com.

. J. Han is with the Department of Computer Science, University of Illinois
at Urbana-Champaign, 201 N. Goodwin Avenue, 2132 Siebel Center for
Computer Science, MC-258, Urbana, IL 61801-2302.
E-mail: hanj@cs.uiuc.edu.

Manuscript received 18 Sept. 2006; revised 5 Mar. 2007; accepted 30 Mar.
2007; published online 3 Apr. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0435-0906.
Digital Object Identifier no. 10.1109/TKDE.2007.1043.

1. BIDE stands for BI-Directional-Extension-based frequent closed
sequence mining.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

BackScan pruning method. In this section, we also discuss
how to extend BIDE to mine frequent closed sequences of
subsets of items from general sequence databases. In
Section 4, we present an extensive experimental study.
Finally, we conclude the study in Section 5.

2 PROBLEM DEFINITION AND RELATED WORK

Let I ¼ fi1; i2; . . . ; ing be a set of distinct items. A sequence S
is an ordered list of events, denoted by he1; e2; . . . ; emi, where
ei is an item, that is, ei 2 I for 1 � i � m. For brevity, a
sequence is also written as e1e2 . . . em. From the definition,
we know that an item can occur multiple times in different
events of a sequence. The number of events (that is, instances
of items) in a sequence is called the length of the sequence,
and a sequence with a length l is also called an l-sequence. For
example, AABCCA is a 6-sequence. A sequence Sa ¼
a1a2 . . . an is contained in another sequence Sb ¼ b1b2 . . . bm if
there exist integers 1 � i1 < i2 < . . . < in � m such that
a1 ¼ bi1 ; a2 ¼ bi2 ; . . . ; an ¼ bin . If sequence Sa is contained in
sequence Sb, Sa is called a subsequence of Sb and Sb a
supersequence of Sa, denoted by Sa v Sb.

An input sequence database SDB is a set of tuples
ðsid; SÞ, where sid is a sequence identifier, and S an input
sequence. The number of tuples in SDB is called the base

size of SDB, denoted by jSDBj. A tuple ðsid; SÞ is said to
contain a sequence S� if S is a supersequence of S�, that is,
S� v S. The absolute support of a sequence S� in a
sequence database SDB is the number of tuples in SDB
that contain S�, denoted by supSDBðS�Þ, and the relative

support is the percentage of tuples in SDB that contain S�
(that is, supSDBðS�Þ=jSDBj). Without loss of generality, we
use the absolute support for describing the BIDE algorithm
while using the relative support to present the experimental
results in the remainder of the paper.

Given a support threshold min sup, a sequence S� is a
frequent sequence on SDB if supSDBðS�Þ � min sup. If
sequence S� is frequent and there exists no proper super-
sequence of S� with the same support, that is, there exists
no S� such that S� j

�
� S� and supSDBðS�Þ ¼ supSDBðS�Þ, we

call S� a frequent closed sequence. The problem of mining
frequent closed sequences is to find the complete set of
frequent closed sequences for an input sequence database
SDB, given a minimum support threshold, min sup.

Example 1. Table 1 shows the input sequence database SDB
in our running example. The database has a total of three
unique items and four input sequences (that is,
jSDBj ¼ 4). Suppose min sup ¼ 2. The complete set of

frequent closed sequences Sfcs ¼ fAA:2; ABB:2; ABC:
4; CA:3; CABC:2; CB:3g consists of only six sequences,
whereas the whole set of frequent sequences consists of 17
sequences, that is,

Sfs ¼fA:4; AA:2; AB:4; ABB:2; ABC:4; AC:4; B:4;

BB:2; BC:4; C:4; CA:3; CAB:2; CABC:2;

CAC:2; CB:3; CBC:2; CC:2g:

Obviously, Sfcs is more compact than Sfs. Also, if a
frequent sequence S� has the same support as that of
one of its proper supersequences S�, S� is absorbed by
S�. For example, frequent sequence CBC:2 is absorbed
by sequence CABC:2, because ðCBC j�� CABCÞ and
ðsupSDBðCBCÞ ¼ supSDBðCABCÞ ¼ 2Þ.
Notice that in the above definition of a sequence, each

event contains only a single item. Thus, the derived BIDE

algorithm mines only frequent closed single-item sequences.

In Section 3.5, we discuss how to extend BIDE to mine

closed sequences of subsets of items (for example,

sequences of shopping transactions). The reasons why we

first discuss mining single-item sequences include the

following: 1) it makes the presentation clear by focusing

on the methodology and optimization techniques instead of

tedious description, and 2) it represents one of the most

important and popular type of sequences such as DNA

strings, protein sequences, Web click streams, and se-

quences of file block references in operating systems.

2.1 Related Work

The sequential pattern mining problem was first proposed
by Agrawal and Srikant in [2], and the same authors further
developed a generalized and refined algorithm, General-
ized Sequential Patterns (GSP) [27], based on the Apriori
property [1]. Since then, many sequential pattern mining
algorithms have also been proposed for performance
improvements. Among those, SPADE [34], PrefixSpan
[22], and SPAM [4] are quite interesting ones. SPADE is
based on a vertical ID-list format and uses a lattice-theoretic
approach to decompose the original search space into
smaller spaces, whereas PrefixSpan adopts a horizontal
format data set representation and mines the sequential
patterns under the pattern-growth paradigm: Grow a prefix
pattern to get longer sequential patterns by building and
scanning its projected database. Both SPADE and Prefix-
Span outperform GSP. SPAM is developed for mining long
sequential patterns and adopts a vertical bitmap represen-
tation. Its performance study shows that SPAM is more
efficient in mining long patterns than SPADE and Prefix-
Span; however, it consumes more space in comparison with
SPADE and PrefixSpan.

Since the introduction of frequent closed itemset mining

[20], many efficient frequent closed itemset mining algo-

rithms have been proposed, such as A-Close [20], CLOSET

[21], CHARM [35], CLOSET+ [29], and several recently

devised methods [5]. Most of these algorithms need to

maintain the already mined frequent closed patterns in

order to do pattern closure checking. To reduce the memory

usage and search space for pattern closure checking, two

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

TABLE 1
An Example Sequence Database SDB

algorithms, TFP [10] and CLOSET+,2 adopt a compact two-

level hash-indexed result-tree structure to store the already

mined frequent closed itemset candidates. Some of the

pruning methods and pattern closure checking schemes

proposed there can be extended for optimizing the mining

of closed sequential patterns as well.
CloSpan is a recently proposed algorithm for mining

frequent closed sequences [32]. It follows the candidate
maintenance-and-test approach: First, generate a set of closed
sequence candidates that is stored in a hash-indexed result-
tree structure and then do postpruning on it. It uses some
pruning methods like CommomPrefix and Backward Sub-
Pattern pruning to prune the search space. Because CloSpan
needs to maintain the set of historical closed sequence
candidates, it will consume much memory and lead to a
huge search space for pattern closure checking when there
are many frequent closed sequences. As a result, it does not
scale very well with respect to the number of frequent
closed sequences.

Contributions. In this paper, we introduce BIDE, an
efficient algorithm for discovering the complete set of
frequent closed sequences. The contributions of this paper
include the following: 1) A new paradigm is proposed for
mining closed sequences without candidate maintenance,
called BI-Directional Extension. The forward directional
extension is used to grow the prefix patterns and also
check the closure of prefix patterns, whereas the backward
directional extension can be used to both check the closure
of a prefix pattern and prune the search space. 2) Under the
BI-Directional Extension paradigm, the BI-Directional Exten-
sion pattern closure checking scheme and the BackScan
pruning method are proposed to speed up the mining and
also assure the correctness of the mining algorithm. We also
devise the BIDE algorithm in order to mine frequent closed
sequences.

3 BIDE: AN EFFICIENT ALGORITHM FOR FREQUENT

CLOSED SEQUENCE MINING

In this section, we introduce the BIDE algorithm by
answering the following questions: How do we enumerate
the complete set of frequent sequences? Upon getting a
frequent sequence, how do we check if it is closed? How do
we design some search space pruning methods to accelerate
the mining process? How do we extend the BIDE algorithm
to mine frequent closed sequences of subsets of items?

3.1 Frequent Sequence Enumeration

Assume that there is a lexicographical ordering � among
the set of items I in the input sequence database (for
example, in our running example, one possible item
ordering can be A � B � C). Conceptually, the complete
search space of sequence mining forms a sequence tree [4],
which can be constructed in the following way: The root
node of the tree is at the top level and labeled with ;;
recursively, we can extend a node N at level L in the tree by

adding one item in I to get a child node at the next level
Lþ 1, and the children of a node N are generated and
arranged according to the chosen lexicographical ordering.
By removing the infrequent sequences in the sequence tree,
the remaining nodes in the lattice form a lexicographic
frequent sequence tree, which contains the complete set of
frequent sequences. Fig. 1 shows the lexicographic frequent
sequence tree built from our running example. In Fig. 1,
each node contains a frequent sequence and its correspond-
ing support, and the sequences in the dotted ellipses are
nonclosed ones.

Many previous frequent pattern (either itemset or
sequence) mining algorithms have elaborated that depth-
first searching is more efficient in mining long patterns than
breadth-first searching [4]. BIDE traverses the sequence tree
in a strict depth-first search order. In our example shown in
Fig. 1, the frequent sequences will be mined and reported in
such an order: A :4, AA :2, AB :4, ABB :2, ABC :4, AC :4,
B :4, BB :2, BC :4, C :4, CA :3, CAB :2, CABC :2, CAC :2,
CB :3, CBC :2, CC :2.

A certain node in the sequence tree can be treated as a
prefix sequence from which the set of its children can be
generated by adding one item in I. Some items may not be
locally frequent with respect to the corresponding prefix
sequence. Because we are only interested in mining
frequent sequences, according to the downward closure
property (also called the Apriori property [1]), we only need
to grow a prefix sequence using the set of its locally
frequent items. To compute the locally frequent items with
respect to a certain prefix, a well-known method is to build
the projected database for the prefix and scan it to count the
items. Two kinds of projection methods have been used in
the past: physical projection and pseudoprojection [22]. Because
the physical-projection-based method needs to physically
build the conditional projected databases, it is not space and
runtime-efficient due to the cost of allocating and freeing
memory. In BIDE, we only use the pseudoprojection
method to find the set of locally frequent items with respect
to a certain prefix and use them to grow the corresponding
prefix. Here, we briefly introduce the pseudoprojection
method (for details, see [22]).

Definition 1 (First instance of a prefix sequence). Given an
input sequence S that contains a prefix 1-sequence e1, the
subsequence from the beginning of S to the first appearance of

WANG ET AL.: FREQUENT CLOSED SEQUENCE MINING WITHOUT CANDIDATE MAINTENANCE 3

2. CLOSET+ adopts a hybrid closure checking scheme: The result-tree
method for dense data sets and upward checking for sparse data sets, among
which the upward checking can be regarded as a simplified version of the
backward-extension event checking described in Lemma 2 of this paper.

Fig. 1. The lexicographic frequent sequence tree in our running

example.

item e1 in S is called the first instance of prefix 1-sequence e1

in S. Recursively, we can define the first instance of a ðiþ
1Þ-sequence e1e2 . . . eieiþ1 from the first instance of the
i-sequence e1e2 . . . ei (where i � 1) as the subsequence from
the beginning of S to the first appearance of item eiþ1 that also
occurs after the first instance of the i-sequence e1e2 . . . ei. For
example, the first instance of the prefix sequence AB in
sequence CAABC is CAAB.

Definition 2 (Projected sequence of a prefix sequence).
Given an input sequence S that contains a prefix i-sequence
e1e2 . . . ei, the remaining part of S after we remove the first
instance of the prefix i-sequence e1e2 . . . ei in S is called the
projected sequence with respect to prefix e1e2 . . . ei in S. For
example, the projected sequence of prefix sequence AB in
sequence ABBCA is BCA.

Definition 3 (Projected database of a prefix sequence).
Given an input sequence database SDB, the complete set of
projected sequences in SDB with respect to a prefix
sequence e1e2 . . . ei is called the projected database with
respect to prefix e1e2 . . . ei in SDB. For example, the
projected database of prefix sequence AB in our running
example is fC;CB;C;BCAg.

After giving the definition of the projected database for a
certain prefix sequence, the idea of pseudoprojection can be
described as follows: Instead of physically constructing the
projected database, we only need to record a set of pointers,
one for each projected sequence, pointing at the starting
position in the corresponding projected sequence. By
following the set of pointers, it is easy to locate the set of
projected sequences. Moreover, by scanning forward each
projected sequence with respect to a prefix Sp and counting
the items (this is the so-called Forward-extension step), we
will find the locally frequent items with respect to prefix Sp,
which can be used to grow prefix Sp in order to get longer
frequent prefix sequences. For example, if Sp ¼ AB, the set
of its locally frequent items is fC :4; B :2g.

Fig. 2 shows the algorithm to enumerate the complete set
of frequent sequences, which is similar to the pseudoprojec-

tion-based PrefixSpan algorithm. It recursively calls sub-
routine Frequent-sequences (Sp SDB, Sp, min sup, and FS):
For a certain prefix Sp, if it is nonempty, output it (lines 4
and 5), scan projected database Sp SDB once to find the
locally frequent items (line 6), choose each frequent item i in
lexicographical ordering to grow Sp to get a new prefix Sip
(line 10), and scan Sp SDB once again to build the
pseudoprojection database for each new prefix Sip (line 11).
Furthermore, one can easily figure out that the order of the
frequent sequence enumeration is consistent with the
depth-first traversal of the frequent sequence tree.

3.2 The BI-Directional Extension Closure Checking
Scheme

The frequent enumeration algorithm in Fig. 2 can only be
used to mine the complete set of frequent sequences instead
of the frequent closed ones. Usually, upon getting a new
frequent prefix sequence, we need to do pattern closure
checking in order to assure that it is really closed, that is, it
cannot be absorbed by one of its supersequence with the
same support. Currently, most of the frequent closed
pattern (both itemset and sequence) mining algorithms like
CLOSET [21], CHARM [35], TFP [10], and CloSpan [32]
need to maintain the set of already mined frequent closed
patterns (or just candidates) in memory and do 1) subpattern
checking, which checks if a newly found pattern can be
absorbed by an already mined frequent closed pattern (or
candidate), and/or 2) superpattern checking, which checks
whether the newly found pattern can absorb some already
mined closed pattern candidates.

For a properly designed closed itemset mining algorithm
like CHARM, it only needs to do the subpattern checking,
which is usually less expensive than superpattern checking.
However, a typical frequent closed sequence mining
algorithm usually needs to do both subpattern and super-
pattern checking. Here, we can use our running example to
explain it. Let the lexicographical ordering be B � A � C.
Upon getting a new frequent sequence ABC :4, another
frequent sequence BC :4 has already been mined, which can
be absorbed by ABC :4. Therefore, we need to do super-
pattern checking in order to remove the previously mined
but nonclosed frequent sequences. In addition, when we get
a new prefix sequence C :4, another frequent sequence
ABC :4 has already been mined, which can absorb C :4. As
a result, we also need to do subpattern checking in order to
remove the newly found but nonclosed sequence.

It is easy to see that because the above pattern closure
checking scheme adopted by the previous algorithms needs
to maintain the already mined frequent closed patterns (or
candidates) in memory, algorithms like CloSpan may
consume much memory, and the search space for pattern
closure checking will be huge when there exist a large
number of frequent closed sequences. Some closed itemset
mining algorithms such as TFP [10] try to save space by
storing the closed itemset candidates in a compact prefix
itemset-tree structure and reduce the search space by
applying a two-level hash index. CloSpan adopts similar
techniques; however, because a prefix sequence tree is
usually less compact than an itemset tree, it still consumes
much memory.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

Fig. 2. Frequent sequence enumeration algorithm.

To avoid maintaining the set of already mined closed
sequence candidates in memory, we have designed a
new sequence closure checking scheme, called BI-Direc-
tional Extension checking. According to the definition
of a frequent closed sequence, if an n-sequence S ¼
e1e2 . . . en is nonclosed, there must exist at least one
event e0 that can be used to extend sequence S to get a
new sequence S0 that has the same support. The
sequence S can be extended in three ways: 1) S0 ¼
e1e2 . . . ene

0 and supSDBðS0Þ ¼ supSDBðSÞ, 2) 9i ð1 � i < nÞ,
S0 ¼ e1e2 . . . eie

0eiþ1 . . . en, a n d supSDBðS0Þ ¼ supSDBðSÞ,
and 3) S0 ¼ e0e1e2 . . . en and supSDBðS0Þ ¼ supSDBðSÞ. In
the first case, event e0 occurs after event en, we call e0 a
forward-extension event (or item) and S0 a forward-extension
sequence with respect to S. Whereas in the second and
third cases, event e0 occurs before event en, we call e0 a
backward-extension event (or item) and S0 a backward-
extension sequence with respect to S. After giving the
above definition, the following theorem will be evident
according to the definition of a frequent closed sequence.

Theorem 1 (BI-Directional Extension closure checking). If
there exists no forward-extension event nor backward-exten-
sion event with respect to a prefix sequence Sp, Sp must be a
closed sequence; otherwise, Sp must be nonclosed.

From Theorem 1, we know that to judge if a frequent
prefix sequence is closed, we need to check whether there is
any forward-extension event or backward-extension event.
It is relatively easy to find the forward-extension events
according to the following lemma.

Lemma 1 (Forward-extension event checking). For a prefix
sequence Sp, its complete set of forward-extension events is
equivalent to the set of its locally frequent items whose
supports are equal to SUPSDBðSpÞ.

Proof. The locally frequent items are found by scanning the
projected database with respect to Sp, which consists of
all the projected sequences. Since each event in a
projected sequence always occurs after the prefix
sequence Sp, if it occurs in every projected sequence, it
forms a forward-extension event. Also, any event
occurring after the first instance of Sp must be included
in the projected database, which means the complete set
of forward-extension events can be found by scanning
the projected database with respect to Sp. tu

Definition 4 (Last instance of a prefix sequence). Given an
input sequence S that contains a prefix i-sequence e1e2 . . . ei,
the last instance of the prefix sequence e1e2 . . . ei in S is the
subsequence from the beginning of S to the last appearance of
item ei in S. For example, the last instance of the prefix
sequence AB in sequence ABBCA is ABB.

Definition 5 (The ith last-in-last appearance with respect
to a prefix sequence). For an input sequence S containing a
prefix n-sequence Sp ¼ e1e2 . . . en, the ith last-in-last appear-
ance with respect to the prefix Sp in S is denoted by LLi and
defined recursively as follows: 1) If i ¼ n, it is the last
appearance of ei in the last instance of the prefix Sp in S, and
2) if 1 � i < n, it is the last appearance of ei in the last
instance of the prefix Sp in S, and LLi must appear before
LLiþ1. For example, if S ¼ CAABC and Sp ¼ AB, the first

last-in-last appearance with respect to prefix Sp in S is the
second A in S; whereas if S ¼ CACAC and Sp ¼ CAC, the
first last-in-last appearance with respect to prefix Sp in S is the
second C in S, the second last-in-last appearance with respect
to prefix Sp in S is the second A in S, and the third last-in-last
appearance with respect to prefix Sp in S is the third C in S.

Definition 6 (The ith maximum period of a prefix

sequence). For an input sequence S containing a prefix
n-sequence Sp ¼ e1e2 . . . en, the ith maximum period of the
prefix Sp in S is defined as follows: 1) If 1 < i � n, it is the
piece of sequence between the end of the first instance of prefix
e1e2 . . . ei�1 in S and the ith last-in-last appearance with
respect to prefix Sp, and 2) if i ¼ 1, it is the piece of sequence in
S located before the first last-in-last appearance with respect to
prefix Sp. For example, if S ¼ ABCB and Sp ¼ AB, the first
maximum period of prefix Sp in S is empty, and the second
maximum period of prefix Sp in S is BC; whereas if S ¼
ABBB and Sp ¼ BB, the first maximum period of prefix Sp
in S is AB, and the second maximum period of prefix Sp in S
is B.

Lemma 2 (Backward-extension event checking). Let the
prefix sequence be an n-sequence Sp ¼ e1e2 . . . en. If 9i ð1 �
i � nÞ and there exists an item e0 that appears in each of the
ith maximum periods of the prefix Sp in SDB, e0 is a
backward-extension event (or item) with respect to prefix Sp.
Otherwise, for any i ð1 � i � nÞ, if we cannot find any item
that appears in each of the ith maximum periods of the prefix
Sp in SDB, there will be no backward-extension event with
respect to prefix Sp.

Proof. From the definition of the ith maximum period of a
prefix sequence, we know that if item e0 appears in each of
the ith maximum periods of the prefix sequence Sp, we
can get a new sequence S0p ¼ e1e2 . . . ei�1e

0ei . . . en ð1 < i �
nÞ or S0p ¼ e0e1e2 . . . en ði ¼ 1Þ, which satisfies S0p j

�
� Sp and

supSDBðS0pÞ ¼ supSDBðSpÞ. Therefore, e0 is a backward-
extension item with respect to prefix Sp, and Sp is not
closed.

In addition, assume that there exists a sequence S0p ¼
e0e1e2 . . . en (for i ¼ 1) or S0p ¼ e1e2 . . . ei�1e

0ei . . . en (for
1 < i � n), which can absorb Sp, that is, item e0 is a
backward-extension item with respect to Sp. In each
sequence containing Sp, item e0 must appear after the
first instance of prefix e1e2 . . . ei�1 (for 1 < i � n) and
before the ith last-in-last appearance with respect to Sp,
which means item e0 must appear in the ith maximum
period of Sp. As a result, for any i ð1 � i � nÞ, if we
cannot find any item that appears in each of the ith
maximum periods of the prefix Sp in SDB, there will be
no backward-extension event with respect to prefix Sp.tu

Suppose the current prefix Sp ¼ e1e2 . . . en is contained in
k sequences of database SDB, and there exists a backward-
extension item e that can be used to extend Sp and get a new
prefix S0p ¼ e1e2 . . . ei�1eei . . . en, then item e must appear
after the first appearance of subsequence e1e2 . . . ei�1 but
before the last appearance of subsequence ei . . . en in each of
the k sequences containing Sp. This is the basic intuition
behind Lemma 2. We use examples to illustrate the
sequence closure checking scheme in BIDE. First, we

WANG ET AL.: FREQUENT CLOSED SEQUENCE MINING WITHOUT CANDIDATE MAINTENANCE 5

assume that Sp ¼ AC :4; it is easy to find that item B
appears in each of the second maximum periods of Sp with
respect to SDB. As a result, AC :4 is not closed. In contrast,
let Sp ¼ ABC :4; we cannot find any backward-extension
item with respect to SDB for it. Also, there is no forward-
extension item for it; therefore, ABC :4 is a frequent closed
sequence.

3.3 The BackScan Search Space Pruning Method

Upon finding a new frequent sequence by the frequent
sequence enumeration algorithm, we can use the above BI-
Directional Extension closure checking scheme to check if it is
closed in order to generate the complete set of nonredun-
dant frequent sequences. Although the closure checking
scheme can lead to a more compact result set, it cannot
improve the mining efficiency. As Fig. 1 shows, the whole
subtree under node “B :4” contains no frequent closed
sequences, which means there is no hope to grow prefix
B :4 to generate any frequent closed sequences. If we can
detect such unpromising prefix sequences and stop grow-
ing them, the search space will be reduced.

Search-space pruning in frequent closed sequence
mining is trickier than that in frequent closed itemset
mining. Usually, a depth-first-search-based closed itemset
mining algorithm like CLOSET can stop growing a prefix
itemset once it finds that this itemset can be absorbed by an
already mined closed itemset. However, a closed sequence
mining algorithm cannot do so. For example, assume that
the lexicographical ordering in our running example is
A � B � C, and the current prefix sequence is C :4, which
can be absorbed by an already mined sequence ABC :4, but
we cannot stop growing C :4. As Fig. 1 shows, we can still
generate three frequent closed sequences (that is, CA :3,
CABC :2, and CB :3) by growing prefix C :4. This compli-
cated situation is caused by the multiple instances of the
same item in a sequence and the temporal ordering among
the events in a sequence.

Definition 7 (The ith last-in-first appearance with respect
to a prefix sequence). For an input sequence S containing a
prefix n-sequence Sp ¼ e1e2 . . . en, the ith last-in-first
appearance with respect to the prefix Sp in S is denoted by
LFi and defined recursively as follows: 1) If i ¼ n, it is the last
appearance of ei in the first instance of the prefix Sp in S, and
2) if 1 � i < n, it is the last appearance of ei in the first
instance of the prefix Sp in S, and LFi must appear before
LFiþ1. For example, if S ¼ CAABC and Sp ¼ CA, the first
last-in-first appearance with respect to prefix Sp in S is the
first C in S, and the second last-in-first appearance with
respect to prefix Sp in S is the first A in S; whereas if S ¼
CAABB and Sp ¼ CAB, the first last-in-first appearance
with respect to prefix Sp in S is the first C in S, the second
last-in-first appearance with respect to prefix Sp in S is the
second A in S, and the third last-in-first appearance with
respect to prefix Sp in S is the first B in S.

Definition 8 (The ith semimaximum period of a prefix
sequence). For an input sequence S containing a prefix
n-sequence Sp ¼ e1e2 . . . en, the ith semimaximum period of
the prefix Sp in S is defined as follows: 1) If 1 < i � n, it is the
piece of sequence between the end of the first instance of prefix
e1e2 . . . ei�1 in S and the ith last-in-first appearance with

respect to prefix Sp, and 2) if i ¼ 1, it is the piece of sequence in
S located before the first last-in-first appearance with respect to
prefix Sp. For example, if S ¼ ABCB and the prefix sequence
Sp ¼ AC, the first semimaximum period of prefix AC in S is
empty, and the second semimaximum period of prefix AC in S
is B; whereas if S ¼ CAABB and Sp ¼ CAB, the first
semimaximum period of prefix CAB in S is empty, the second
semimaximum period of prefix CAB in S is A, and the third
semimaximum period of prefix CAB in S is A.

Theorem 2 (BackScan search-space pruning). Let the prefix
sequence be an n-sequence Sp ¼ e1e2 . . . en. If 9i ð1 � i � nÞ
and there exists an item e0 that appears in each of the
ith semimaximum periods of the prefix Sp in SDB, we can
safely stop growing prefix Sp.

Proof. Because item e0 appears in each of the
ith semimaximum periods of the prefix Sp in SDB,
we can get a new prefix S0p ¼ e1e2 . . . ei�1e

0ei . . . en ð1 <
i � nÞ or S0p ¼ e0e1e2 . . . en ði ¼ 1Þ, and both ðSp j�� S0pÞ
and ðsupSDBðSpÞ ¼ supSDBðS0pÞÞ hold. Any locally fre-
quent item e00 with respect to prefix Sp is also a locally
frequent item with respect to S0p; in the meantime,
ðhSp; e00i j�� hS0p; e00iÞ and

ðsupSDBðhSp; e00iÞ ¼ supSDBðhS0p; e00iÞÞ

hold. This means that there is no hope to mine frequent
closed sequences with prefix Sp. tu
For example, if prefix sequence Sp ¼ B :4, there is an

item A that appears in each of the first semimaximum
period of prefix Sp in SDB and, so, we can safely stop
mining frequent closed sequences with prefix B :4. In
contrast, if Sp ¼ C :4, we cannot find any item that appears
in each of the first semimaximum periods of prefix Sp in
SDB. As a result, we cannot stop growing C :4. One may
wonder why the BackScan search-space pruning is based
on semimaximum periods instead of maximum periods.
Here, we use a counterexample to illustrate why backward-
extension items found over the maximum periods cannot be
used to stop growing the current prefix. Suppose the input
sequence database contains only two identical sequences
S1 ¼ CAABC and S2 ¼ CAABC, and the current prefix
Sp ¼ CA. According to Definition 8, we cannot find any
backward-extension item either from the set of the first
semimaximum periods or from the set of the second
semimaximum periods. Thus, we cannot prune prefix CA
according to Theorem 2. However, we do find a backward
extension item A that appears in each of the second
maximum periods; if we stop growing prefix CA accord-
ingly, we will no longer be able to discover the closed
sequence CAABC :2.

Compared with some pruning methods used in pre-
viously developed algorithms [21], [35], [32], which are
based on the relationships among the newly found
frequent pattern and some already mined closed patterns
(or just candidates), the BackScan pruning method is more
aggressive and, thus, more effective. Consider another
possible lexicographical ordering in our running example
B � A � C, which means we first mine the closed
sequences with prefix B. According to Theorem 2, we
can safely prune prefix B and directly mine frequent

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

closed sequences with prefix A. However, because there
are no other already mined frequent closed sequences (or
candidates) for checking, algorithms based on the candidate
maintenance-and-test paradigm will still try to use B as a
prefix to grow frequent closed sequences. Although
Theorem 2 provides an effective way for pruning some
futile parts of the search space, we must remark here that
only serves as a sufficient condition but not a necessary
condition for pruning. That is, even if we cannot generate
any closed sequences by growing the current prefix, we
may not be able to prune the prefix sequence according to
Theorem 2. This means that there is still some room to
further prune some unpromising parts of the search space.
In the following, we give a simple example where
Theorem 2 cannot handle well. Suppose the sequence
database contains two sequences S1 ¼ CACB and
S2 ¼ CCACB, and the current prefix Sp ¼ CC. It is evident
that we cannot rely on Theorem 2 to prune prefix CC;
however, no closed sequences can be grown from prefix
CC, as all the sequences with prefix CC (that is, CC and
CCB) are nonclosed.

3.4 The BIDE Algorithm

Fig. 3 shows the BIDE algorithm. It first scans the
database once to find the frequent 1-sequences (line 2),
builds a pseudoprojected database for each frequent
1-sequence (lines 3 and 4), treats each frequent 1-sequence
as a prefix and uses the BackScan pruning method to
check if it can be pruned (line 6), if not, computes the

number of backward-extension items (line 7), and calls
subroutine bideðSp SDB; Sp;min sup;BEI; FCSÞ (line 8).
Subroutine bideðSp SDB; Sp;min sup;BEI; FCSÞ recur-
sively calls itself and works as follows: For prefix Sp,
scan its projected database Sp SDB once to find its locally
frequent items (line 10), compute the number of forward-
extension items (line 11), if there is no backward-extension
item nor forward-extension item, output Sp as a frequent
closed sequence (lines 12 and 13), grow Sp with each
locally frequent item in lexicographical ordering to get a
new prefix (line 15), and build the pseudoprojected
database for the new prefix (line 16), for each new prefix,
first check if it can be pruned (line 18), if not, compute the
number of backward-extension items (line 19) and call itself
(line 20).

3.5 Closed Sequence Mining for General Sequence
Databases

The BIDE algorithm shown in Fig. 3 can only mine frequent
closed sequences of single items, but, in some cases, we
need to mine frequent closed sequences of subsets of items,
that is, each event may contain a set of unordered items. As
the work in [4] has shown, there are two kinds of extensions
to grow a certain prefix sequence: sequence extensions
(S-extension) and itemset extensions (I-extension). A se-
quence extension with respect to a prefix is generated by
adding a new event consisting of a single item to the prefix
sequence, whereas an itemset extension with respect to a
prefix is a sequence generated by adding an item to any one
event of the prefix sequence. Revising the frequent
sequence enumeration algorithm shown in Fig. 2 to mine
frequent sequences of subsets of items is straightforward,
which is the same as the pseudoprojection-based PrefixSpan
algorithm [22]. In the following, we will mainly focus on
how to adapt the BI-Directional Extension closure checking
scheme for frequent closed sequence mining in general
sequence databases. As the BackScan pruning method is
very similar to the backward-extension event/item check-
ing of the BI-Directional Extension closure checking scheme,
we will not introduce its new form for general sequence
databases. Also, due to limited space, we do not elaborate
on the proofs (or rationale) of the corresponding theorems
and lemmas. By adopting the general form of BI-Directional
Extension closure checking scheme and BackScan pruning
method introduced in this section, it is straightforward to
adapt the BIDE algorithm to mine frequent closed
sequences of subsets of items.

3.5.1 Generalized Closure Checking Scheme

To check if the current prefix sequence of subsets of items is
closed or not, we need to figure out whether there exists any
S-extension item or I-extension item that has the same
support as the prefix sequence. Thus, we need to revise
Theorem 1 to the following form.

Theorem 3 (Generalized BI-Directional Extension closure

checking). If there exists no forward-S-extension item,
forward-I-extension item, backward-S-extension item, nor
backward-I-extension item with respect to a prefix sequence
Sp, Sp must be a closed sequence; otherwise, Sp must be
nonclosed.

WANG ET AL.: FREQUENT CLOSED SEQUENCE MINING WITHOUT CANDIDATE MAINTENANCE 7

Fig. 3. BIDE algorithm.

Suppose Sp ¼ e1e2 . . . em, where ei ð8i; 1 � i � mÞ is a
subset of items ðxi1xi2 . . .xikÞ. We assume that the items in
each event are sorted in lexicographical ordering. In
Theorem 3, a forward-S-extension item x with respect to
prefix Sp is an item that can be used to extend Sp as an
S-extension to get a new prefix S0p such that S0p ¼ e1e2 . . . emx
and SUPSDBðSpÞ ¼ SUPSDBðS0pÞ, a forward-I-extension
item x with respect to Sp is an item that can be used to
extend Sp as an I-extension to get a new prefix S0p such that
S0p ¼ e1e2 . . . ðemxÞ and SUPSDBðSpÞ ¼ SUPSDBðS0pÞ, a back-
ward-S-extension item x with respect to Sp is an item that
can be used to extend Sp as an S-extension to get a new
prefix S0p such that S0p ¼ e1e2 . . . ei�1xei . . . em ð8i; 1 � i � mÞ
and SUPSDBðSpÞ ¼ SUPSDBðS0pÞ, and a backward-I-exten-
sion item x with respect to Sp is an item that can be used to
extend Sp as an I-extension to get a new prefix S0p such that

S0p ¼ e1e2 . . . ðxi1 . . .xij�1
x xij . . .xikÞ . . .

em ð8j; 1 � j � ðkþ 1Þ

if 1 � i < m, whereas 1 � j � k if i ¼ m) and

SUPSDBðSpÞ ¼ SUPSDBðS0pÞ:

Similarly, Lemma 1 should be revised to the following form.

Lemma 3 (Generalized forward-extension checking). For a
prefix sequence Sp, its complete set of forward-S-extension
items and forward-I-extension items is equivalent to the set of
its locally frequent S-extension and I-extension items whose
supports are equal to SUPSDBðSpÞ.
According to Lemma 3, it is very easy to compute the

complete set of forward-extension items with respect to the
current prefix Sp, which is equivalent to the set of the locally
frequent S-extension and I-extension items whose supports
are equal to SUPSDBðSpÞ, and the method to compute the
locally frequent S-extension and I-extension items can be
found in [22]. In the GSDB database shown in Table 2, if
Sp ¼ A, item B is both a forward-S-extension item and a
forward-I-extension item with respect to Sp, thus Sp is not
closed. As another case, we let Sp ¼ AB, it is relatively easy
to get that there is neither forward-S-extension item nor
forward-I-extension item with respect to prefix AB. To
judge whether AB is closed or not, we need to determine if
we can find any backward-S-extension item or backward-I-
extension item.

To facilitate the checking of backward-S-extension items
and backward-I-extension items, we need to first define the
projected event and event appearance of an event e1 with
respect to another event e2.

Definition 9 (Projected event and event appearance). Given
two events e1 ¼ ðx11

. . .x1mÞ and e2 ¼ ðx21
. . .x2nÞ, if e1 � e2,

the subset of items of ðe2 � e1Þ is called the projected event of
event e1 with respect to e2; otherwise, the projected event of e1

with respect to e2 is empty. In addition, in case of e1 � e2, e2 is
called an appearance of e1. For example, let e1 ¼ ðA CÞ and
e2 ¼ ðA B C DÞ, the projected event of e1 with respect to e2 is
(B D) and e2 is an appearance of e1.

Given the above definition of an event appearance,
Definition 4, Definition 5, Definition 6, and Lemma 2 still
hold, but they can only be used to compute the set of
backward-S-extension items for a prefix sequence. To
compute the set of backward-I-extension items, we need
to devise a new method.

Definition 10 (The ith I-extension period of a prefix
sequence). For an input sequence S containing a prefix
Sp ¼ e1e2 . . . en, the ith I-extension period of the prefix Sp in
S is defined as follows: 1) If 1 < i < n, it is the piece of
sequence between the end of the first instance of prefix
e1e2 . . . ei�1 in S and the beginning of the first event in S after
the ith last-in-last appearance with respect to prefix Sp, 2) if
i ¼ 1, it is the piece of sequence in S located before the first
event in S after the first last-in-last appearance with respect to
prefix Sp, and 3) if i ¼ n, it is the piece of sequence in S after
the first instance of prefix e1e2 . . . en�1 but before the first
event in S after the nth last-in-last appearance with respect to
prefix Sp.

Definition 11 (The ith backward-I-extension itemset of a
prefix sequence). For an input sequence S containing a
prefix Sp ¼ e1e2 . . . en, the union of the projected events of
event ei with respect to any event appearance of ei in the
ith I-extension period is called the ith backward-I-extension
itemset of a prefix sequence Sp with respect to input
sequence S.

Note that in Definition 11, if i ¼ n, we need to exclude
from the nth I-extension itemset of prefix Sp the items that
are lexicographically greater than any item in the nth event
of Sp, as they have been already considered in the forward-
I-extension item checking.

Lemma 4 (Backward-I-extension item checking). Let the
prefix sequence be Sp ¼ e1e2 . . . en. If 9i ð1 � i � nÞ and there
exists an item x that appears in each of the ith I-extension
itemsets of the prefix Sp in SDB, x is a backward-I-extension
item with respect to prefix Sp. Otherwise, for any
i ð1 � i � nÞ, if we cannot find any item that appears in each
of the ith I-extension itemsets of the prefix Sp in SDB, there
will be no backward-I-extension item with respect to prefix Sp.

Example 2. We use the GSDB database shown in Table 2 as
our running example and let Sp ¼ B:3. The first
I-extension itemsets of prefix Sp with respect to input
sequences 1, 2, and 3 are fA Dg [fC Dg ¼ fA C Dg,
fA Eg, and fAg [fC Dg ¼ fA C Dg, respectively. Note
that as B is also the last event of prefix Sp and items C, D,
and E are lexicographically greater than item B, they
should be excluded from the corresponding I-extension
itemsets. The first I-extension itemsets of prefix Sp with
respect to input sequences 1, 2, and 3 become fAg, fAg,
and fAg. We see that item A is a backward-I-extension
item with respect to prefix B:3 and database GSDB; thus,
B:3 is not closed.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

TABLE 2
A General Sequence Database (GSDB)

4 PERFORMANCE EVALUATION

In this section, we will present our thorough experimental
results in order to verify the following claims: 1) BIDE
consumes much less memory and can be an order of
magnitude faster than CloSpan when the support is low,
2) BIDE has linear scalability against base size in terms of
runtime efficiency and space usage, and 3) the BackScan
pruning method is very effective in enhancing the perfor-
mance of BIDE.

4.1 Test Environment and Data Sets

All of our experiments except those regarding general
frequent closed sequence mining were performed on an
IBM ThinkPad R31 with a 384-Mbyte memory and
Windows XP professional installed. In the experiments,
we compared BIDE with the well-known closed sequential
pattern mining algorithm CloSpan using both real and
synthetic data sets.

The first data set, Gazelle, is very sparse, but it contains
some very long frequent closed sequences with low support
thresholds. This data set was originally provided by Blue
Martini and has been used in evaluating both frequent
itemset mining algorithms [35], [10] and frequent sequence
mining algorithms [32]. It contains a total of 29,369 custo-
mers’ Web click-stream data. For each customer, there is a
corresponding series of page views, and we treat each page
view as an event. This data set contains 29,369 sequences
(that is, customers), 87,546 events (that is, page views), and
1,423 distinct items (that is, Web pages). More detailed
information about this data set can be found in [14].

The second data set, Snake, is a little dense and can
generate a lot of frequent closed sequences with a medium
support threshold like 60 percent. It is a bio-data set, which
contains a total of 175 Toxin-Snake protein sequences and
20 unique items. This Toxin-Snake data set is about a family
of eukaryotic and viral DNA binding proteins and has been
used in evaluating pattern discovery task [13].

The third data set, Pi, is very dense and can generate a
huge number of frequent closed sequences even with a very
high support threshold like 90 percent. This data set is also
a bio-data set, which contains 190 protein sequences and
21 distinct items. This data set has been used to assess the
reliability of functional inheritance [3]. The characteristics of
these real data sets are shown in Table 3.

The fourth data set, C10T8S8I8, is a general sequence
data set (of a set of sequences of subsets of items), which
was generated using the IBM synthetic data generator. This
data set has been adopted in some previous studies such as
that in [22]. It contains 10,000 customers (that is, sequences),

and the number of distinct items is 1,000. Both the average
number of items in a transaction (that is, event) and the
average number of transactions in a sequence are set to
eight. On the average, a frequent sequential pattern consists
of four transactions, and each transaction is composed of
eight items.

To test the scalability of BIDE for mining frequent
closed sequences of subsets of items, we generated a
series of synthetic data sets using the IBM data generator,
C200T2.5S10I1.25, C400T2.5S10I1.25, C600T2.5S10I1.25,
C800T2.5S10I1.25, and C1000T2.5S10I1.25, which have a
base size of 200,000, 400,000, 600,000, 800,000, and
1,000,000 sequences, respectively. All these data sets have
the same distribution: the number of distinct items is
10,000, the average number of transactions (that is,
events) in a sequence is 10, and the average number of
items in a transaction is 2.5. On average, a frequent
sequential pattern consists of four transactions, and each
transaction is composed of 1.25 items.

4.2 Experimental Results

4.2.1 Performance Evaluation for Sequence Databases

with Single-Item Events

Efficiency test. We first compared BIDE with CloSpan
using the Gazelle data set. Fig. 4 depicts the distribution of
the number of frequent closed sequences against the length
of the frequent closed sequences for support thresholds
varying from 0.02 percent to 0.01 percent. In Fig. 4, we see
that many long closed sequences can be discovered for this
sparse data set. For example, at support 0.01 percent, the
longest frequent closed sequence has a length of 127. Figs. 6
and 7 demonstrate the runtime and memory usage
comparison between BIDE and CloSpan. We can see that
BIDE always runs much faster than CloSpan but consumes
much less memory. For example, at support 0.01 percent,
BIDE can be more than an order of magnitude faster than
CloSpan, and it uses less memory by more than an order of
magnitude.

Fig. 5 depicts the distribution of the number of frequent
closed sequences against the length of the frequent closed
sequences for data set Snake. We can see that it is a little

WANG ET AL.: FREQUENT CLOSED SEQUENCE MINING WITHOUT CANDIDATE MAINTENANCE 9

TABLE 3
Real Data Set Characteristics

Fig. 4. Data set Gazelle (distribution).

slightly data set: A lot of closed sequences with a medium
length from 6 to 12 can be mined with some not very low
support thresholds from 50 percent to 70 percent. Fig. 8
shows that for this data set, BIDE is several times slower
than CloSpan at a high support threshold, but, once the
support is no greater than 60 percent, BIDE will signifi-
cantly outperform CloSpan. For example, at support
50 percent, BIDE is about 40 times faster than CloSpan. In
Fig. 9, we can see BIDE uses more than two orders of
magnitude less memory than CloSpan in almost all the
cases. This data set only contains 175 sequences, which is
rather small; however, because CloSpan needs to keep track
of the already mined frequent closed sequence candidates,
it can consume more than 300Mbytes of memory. For
example, at support 50 percent, BIDE uses only about
2 Mbytes of memory, whereas CloSpan uses about
328 Mbytes of memory.

We also used the very dense data set Pi to compare BIDE
with CloSpan. In Fig. 10, we can see that even with a very
high support like 90 percent, there can be a large number of
short frequent closed sequences with a length less than 10.
Fig. 12 shows that with a support higher than 90 percent,

these two algorithms have very similar performance;

CloSpan is only a little faster than BIDE, but once the

support is no greater than 88 percent, BIDE will outperform

CloSpan a lot. For example, at support 88 percent, BIDE is

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

Fig. 6. Data set Gazelle (runtime).

Fig. 7. Data set Gazelle (memory).

Fig. 8. Data set Snake (runtime).

Fig. 5. Data set Snake (distribution).

Fig. 9. Data set Snake (memory).

more than six times faster than CloSpan. In Fig. 13, we

know BIDE always uses much less memory than CloSpan.

At support 88 percent, BIDE consumes more than two

orders of magnitude less memory than CloSpan.
Scalability test. We tested BIDE’s scalability in both

runtime and memory usage using all of the three real data

sets in terms of the base size. In Figs. 14 and 15, we fixed the

support threshold at a certain constant for each data set and

replicated the sequences from 2 to 16 times. Although these

three data sets have rather different features, BIDE shows a

linear scalability in both the runtime and memory usage

against the increasing number of sequences for these data

sets. For example, for data set Snake with a given support of

60 percent, its runtime increases from 807 sec to 11,906 sec,

and its memory usage increases from 1.883 Mbytes to

21.784 Mbytes when the number of sequences increases

16 times.
Effectiveness of the optimization technique in BIDE.

Fig. 16 tests the effectiveness of the BackScan pruning

method adopted in BIDE algorithm. We see that the

BackScan pruning method is very effective in pruning the

search space and speeding up the mining process: For the

Gazelle data set with a support threshold of 0.02 percent, it

can give several orders of magnitude enhancement to the

performance. The effectiveness of the BackScan pruning

method assures that BIDE, which is based only on this

single pruning method, can significantly outperform in

most cases the CloSpan algorithm, which adopts several

pruning methods.

4.2.2 Performance Evaluation for Sequence Databases

with Multiple-Item Events

Efficiency test. We used the real data set Gazelle and

synthetic data sets C10T8S8I8 and C200T2.5S10I1.25 to test

the efficiency of BIDE on general sequence databases.3 For

real data set Gazelle, here, we used its generalized version.

As in [32] and [33], we treated each session in a Web click

stream as an event and, thus, converted the Web click-

stream data into a generalized form of sequences of subsets

of items. We denote the generalized version of Gazelle by

Gazelle� in the following. Figs. 18 and 19 depict the

WANG ET AL.: FREQUENT CLOSED SEQUENCE MINING WITHOUT CANDIDATE MAINTENANCE 11

Fig. 12. Data set Pi (runtime).

Fig. 13. Data set Pi (memory).

Fig. 10. Data set Pi (distribution).

Fig. 11. Data set C10T8S8I8 (distribution).

3. Note that the experiments regarding the performance test on general
sequence databases were conducted on a DELL Inspiron 5100 machine with
a 512-Mbyte memory and a 2.66-GHz CPU installed.

comparison results between BIDE and CloSpan for data set

Gazelle�. At a high support, CloSpan is about two times

faster than BIDE, but at a low support, it can be orders of

magnitude slower than BIDE. In Fig. 19, we see that BIDE

always consumes much less memory than CloSpan.
Fig. 11 shows the distribution of frequent closed

sequences for data set C10T8S8I8 when the support thresh-

old is set at 0.05 percent, 0.04 percent, and 0.03 percent. We

see that this data set is a challenging one, as it can yield

some very long patterns. Fig. 20 shows that at a high

support, CloSpan can be several times faster than BIDE, but

once we lower the support to a certain point, BIDE becomes

much more efficient than CloSpan, and sometimes, it can be

several orders of magnitude faster than CloSpan. As to the

memory usage, we see in Fig. 21 that BIDE consumes over

an order of magnitude less memory than CloSpan for a

wide range of support thresholds.
Figs. 22 and 23 depict the performance comparison

results between BIDE and CloSpan for the relatively large

data set C200T2.5S10I1.25. We see that similar to the results

for the other two data sets, BIDE always uses much less

memory than CloSpan. As to the runtime, CloSpan is

several times faster than BIDE at a high support, but it can

be orders of magnitude slower than BIDE at a low support.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

Fig. 14. Scalability test (single-item event, runtime).

Fig. 15. Scalability test (single-item event, memory).

Fig. 16. Pruning test (single-item event, Gazelle).

Fig. 17. Pruning test (multiple-item event, C10T8S8I8).

Fig. 18. Data set Gazelle� (runtime).

Scalability test. We tested the scalability of BIDE

against base size using the T2.5S10I1.25 data set series. In

the experiments, we adopted three different support

thresholds: 1 percent, 0.5 percent, and 0.25 percent.
Fig. 24 shows the runtime scalability test results. The
three curves in the figure correspond to the three
different support settings. We see that the runtime of
BIDE increases linearly with the increasing number of
input sequences from 200,000 to 1,000,000. Fig. 25 shows
the space usage scalability test. We see that BIDE also has
good scalability for general sequence databases in terms
of memory usage, and the difference between the space
usage with regard to the three different support thresh-
olds is very marginal.

Effectiveness of the optimization technique. The Back-
Scan pruning method has also been generalized to be
applied in the BIDE algorithm. We evaluated the effective-
ness of this pruning method using the C10T8S8I8 data set.
In Fig. 17, we see that the BackScan pruning method is also
very effective in improving the efficiency of the BIDE
algorithm with general sequence databases.

5 CONCLUSIONS

Many studies have elaborated that closed pattern mining
has the same expressive power as that of all frequent

WANG ET AL.: FREQUENT CLOSED SEQUENCE MINING WITHOUT CANDIDATE MAINTENANCE 13

Fig. 19. Data set Gazelle� (memory).

Fig. 20. Data set C10T8S8I8 (runtime).

Fig. 21. Data set C200T2.5S10I1.25 (memory).

Fig. 22. Data set C200T2.5S10I1.25 (runtime).

Fig. 23. Data set C200T2.5S10I1.25 (memory).

pattern mining yet leads to a more compact result set and
significantly better efficiency. This is usually true when the

number of frequent patterns is prohibitively huge; in which
case, the number of frequent closed patterns is also likely

very large. Unfortunately, most of the previously developed
closed pattern mining algorithms rely on the historical set of

frequent closed patterns (or candidates) to check if a newly
found frequent pattern is closed or if it can invalidate some

already mined closed candidates. Because the set of already

mined frequent closed patterns keeps growing during the
mining process, it will not only consume more memory but

also lead to inefficiency due to the growing search space for
pattern closure checking.

In this paper, we proposed BIDE, a novel algorithm for

mining frequent closed sequences. It avoids the curse of the

candidate maintenance-and-test paradigm, prunes the search
space more deeply, and checks the pattern closure in a more

efficient way while consuming much less memory in
contrast to the previously developed closed pattern mining

algorithms. It does not need to maintain the set of historical
closed patterns; thus, it scales very well in the number of

frequent closed patterns. BIDE adopts a strict depth-first

search order and can output the frequent closed patterns in
an online fashion. In addition, BIDE algorithm can be easily
adapted to mine frequent closed sequences of subsets of
items. Many studies have shown that constraints are
essential for many sequential pattern mining applications.
In the future, we plan to study how to push constraints (like
gap constraint) into BIDE in order to mine a more compact
and specific result set.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Mohammed Zaki at
Rensselaer Polytechnic Institute for providing them with
the source code of SPADE, Dr. George Karypis at the
University of Minnesota for providing them with the source
of some protein sequence data, and Dr. Xifeng Yan at the
University of Illinois for providing them with the execu-
table code of CloSpan and some helpful discussions. The
research of Jianyong Wang and Chun Li was supported in
part by 973 Program under Grant 2006CB303103, the Basic
Research Foundation of Tsinghua National Laboratory for
Information Science and Technology (TNList), the Scientific
Research Foundation for the Returned Overseas Chinese
Scholars, State Education Ministry of China, and the
National Natural Science Foundation of China (NSFC)
under Grant 60573061. The research of Jiawei Han was
supported in part by the US National Science Foundation
NSF IIS-05-13678/06-42771 and NSF BDI-05-15813. Any
opinions, findings, and conclusions or recommendations
expressed here are those of the authors and do not
necessarily reflect the views of the funding agencies. A
preliminary conference version of this paper appeared in
the Proceedings of the 2004 International Conference on Data
Engineering (ICDE ’04).

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. Int’l Conf. Very Large Data Bases (VLDB
’94), pp. 487-499, Sept. 1994.

[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
Int’l Conf. Data Eng. (ICDE ’95), pp. 3-14, Mar. 1995.

[3] P. Aloy, E. Querol, F.X. Aviles, and M.J.E. Sternberg, “Automated
Structure-Based Prediction of Functional Sites in Proteins:
Applications to Assessing the Validity of Inheriting Protein
Function from Homology in Genome Annotation and to Protein
Docking,” J. Molecular Biology, vol. 311, pp. 395-408, 2001.

[4] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick, “Sequential Pattern
Mining Using a Bitmap Representation,” Proc. ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining (SIGKDD ’02), pp. 429-
435, July 2002.

[5] Proc. ICDM Workshop Frequent Itemset Mining Implementations
(FIMI ’04), R.J. Bayardo Jr., B. Goethals, and M.J. Zaki, eds., Nov.
2004.

[6] G. Casas-Garriga, “Summarizing Sequential Data with Closed
Partial Orders,” Proc. SIAM Int’l Conf. Data Mining (SDM ’05),
Apr. 2005.

[7] S. Cong, J. Han, and D.A. Padua, “Parallel Mining of Closed
Sequential Patterns,” Proc. ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (SIGKDD ’05), pp. 562-567, Aug. 2003.

[8] M. Deshpande and G. Karypis, “Evaluation of Techniques for
Classifying Biological Sequences,” Proc. Pacific-Asia Conf. Knowl-
edge Discovery and Data Mining (PAKDD ’02), pp. 417-431, May
2002.

[9] M. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: Sequential
Pattern Mining with Regular Expression Constraints,” Proc. Int’l
Conf. Very Large Data Bases (VLDB ’99), pp. 223-234, Sept. 1999.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

Fig. 24. Scalability test (T2.5S10I1.25, runtime).

Fig. 25. Scalability test (T2.5S10I1.25, memory).

[10] J. Han, J. Wang, Y. Lu, and P. Tzvetkov, “Mining Top-K Frequent
Closed Patterns without Minimum Support,” Proc. IEEE Int’l Conf.
Data Mining (ICDM ’02), pp. 211-218, Dec. 2002.

[11] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.C. Hsu,
“FreeSpan: Frequent Pattern-Projected Sequential Pattern
Mining,” Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and
Data Mining (SIGKDD ’00), pp. 355-359, Aug. 2000.

[12] X. Ji, J. Bailey, and G. Dong, “Mining Minimal Distinguishing
Subsequence Patterns with Gap Constraints,” Proc. IEEE Int’l Conf.
Data Mining (ICDM ’05), pp. 194-201, Nov. 2005.

[13] I. Jonassen, J.F. Collins, and D.G. Higgins, “Finding Flexible
Patterns in Unaligned Protein Sequences,” Protein Science, vol. 4,
no. 8, pp. 1587-1595, 1995.

[14] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng, “KDD-
Cup 2000 Organizers’ Report: Peeling the Onion,” SIGKDD
Explorations, vol. 2, pp. 86-98, 2000.

[15] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou, “C-Miner: Mining Block
Correlations in Storage Systems,” Proc. Usenix Conf. File and
Storage Technologies (FAST ’04), pp. 173-186, Mar. 2004.

[16] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding Copy-
Paste and Related Bugs in Large-Scale Software Code,” IEEE
Trans. Software Eng., vol. 32, no. 3, pp. 176-192, Mar. 2006.

[17] H. Mannila, H. Toivonen, and A.I. Verkamo, “Discovering
Frequent Episodes in Sequences,” Proc. ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (SIGKDD ’95), pp. 210-215,
Aug. 1995.

[18] F. Masseglia, F. Cathala, and P. Poncelet, “The PSP Approach for
Mining Sequential Patterns,” Proc. European Symp. Principle of Data
Mining and Knowledge Discovery (PKDD ’98), pp. 176-184, Sept.
1998.

[19] B. Ozden, S. Ramaswamy, and A. Silberschatz, “Cyclic Associa-
tion Rules,” Proc. Int’l Conf. Data Eng. (ICDE ’98), pp. 412-421, Feb.
1998.

[20] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering
Frequent Closed Itemsets for Association Rules,” Proc. Int’l Conf.
Database Theory (ICDT ’99), pp. 398-416, Jan. 1999.

[21] J. Pei, J. Han, and R. Mao, “CLOSET: An Efficient Algorithm for
Mining Frequent Closed Itemsets,” Proc. ACM SIGMOD Workshop
Research Issues in Data Mining and Knowledge Discovery (DMKD ’00),
pp. 21-30, May 2000.

[22] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U.
Dayal, and M. Hsu, “Mining Sequential Patterns by Pattern-
Growth: The PrefixSpan Approach,” IEEE Trans. Knowledge and
Data Eng., vol. 16, no. 11, pp. 1424-1440, Nov. 2004.

[23] J. Pei, J. Han, and W. Wang, “Constraint-Based Sequential Pattern
Mining in Large Databases,” Proc. Int’l Conf. Information and
Knowledge Management (CIKM ’02), pp. 18-25, Nov. 2002.

[24] J. Pei, J. Liu, H. Wang, K. Wang, P.S. Yu, and J. Wang, “Efficiently
Mining Frequent Closed Partial Orders,” Proc. IEEE Int’l Conf.
Data Mining (ICDM ’05), pp. 753-756, Nov. 2005.

[25] M. Seno and G. Karypis, “SLPMiner: An Algorithm for Finding
Frequent Sequential Patterns Using Length-Decreasing Support
Constraint,” Proc. IEEE Int’l Conf. Data Mining (ICDM ’02),
pp. 418-425, Dec. 2002.

[26] R. She, F. Chen, K. Wang, M. Ester, J.L. Gardy, and F.S.L.
Brinkman, “Frequent-Subsequence-Based Prediction of Outer
Membrane Proteins,” Proc. ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (SIGKDD ’03), pp. 436-445, Aug. 2003.

[27] R. Srikant and R. Agrawal, “Mining Sequential Patterns: General-
izations and Performance Improvements,” Proc. Int’l Conf.
Extending Database Technology (EDBT ’96), pp. 3-17, Mar. 1996.

[28] P. Tzvetkov, X. Yan, and J. Han, “TSP: Mining Top-K Closed
Sequential Patterns,” Proc. IEEE Int’l Conf. Data Mining (ICDM
’03), pp. 347-354, Dec. 2003.

[29] J. Wang, J. Han, and J. Pei, “CLOSET+: Searching for the Best
Strategies for Mining Frequent Closed Itemsets,” Proc. ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (SIGKDD
’03), pp. 236-245, Aug. 2003.

[30] T. Xie and J. Pei, “MAPO: Mining API Usages from Open Source
Repositories,” Proc. Third Int’l Workshop Mining Software Reposi-
tories (MSR ’06), pp. 54-57, May 2006.

[31] T. Xie and J. Pei, “Data Mining for Software Engineering,” Proc.
2006 ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (SIGKDD ’06), tutorial, Aug. 2006.

[32] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining Closed
Sequential Patterns in Large Databases,” Proc. SIAM Int’l Conf.
Data Mining (SDM ’03), pp. 166-177, May 2003.

[33] J. Yang, P.S. Yu, W. Wang, and J. Han, “Mining Long Sequential
Patterns in a Noisy Environment,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’02), pp. 406-417, June 2002.

[34] M. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent
Sequences,” Machine Learning, vol. 42, pp. 31-60, 2001.

[35] M. Zaki and C. Hsiao, “CHARM: An Efficient Algorithm for
Closed Itemset Mining,” Proc. SIAM Int’l Conf. Data Mining (SDM
’02), pp. 457-473, Apr. 2002.

Jianyong Wang received the PhD degree in
computer science in 1999 from the Institute of
Computing Technology, the Chinese Academy
of Sciences. Since then, he has worked as an
assistant professor in the Department of Com-
puter Science and Technology, Peking Univer-
sity, in the areas of distributed systems and Web
search engines and visited the School of
Computing Science at Simon Fraser University,
the Department of Computer Science at the

University of Illinois at Urbana-Champaign, and the Digital Technology
Center and Department of Computer Science and Engineering at the
University of Minnesota, mainly working in the area of data mining. He is
currently an associate professor in the Department of Computer Science
and Technology, Tsinghua University, Beijing. He is a senior member of
the IEEE and a member of the ACM Special Interest Group on
Knowledge Discovery and Data Mining (SIGKDD).

Jiawei Han is a professor in the Department of
Computer Science, University of Illinois at
Urbana-Champaign. He has been working on
research into data mining, data warehousing,
stream data mining, spatiotemporal and multi-
media data mining, biological data mining, social
network analysis, text and Web mining, and
software bug mining, with more than 300
conference and journal publications. He has
chaired or served on many program committees

of international conferences and workshops. He also served or is
serving on the editorial boards of Data Mining and Knowledge
Discovery, the IEEE Transactions on Knowledge and Data Engineering,
the Journal of Computer Science and Technology, and the Journal of
Intelligent Information Systems. He is currently the founding editor-in-
chief of the ACM Transactions on Knowledge Discovery from Data, and
on the board of directors for the Executive Committee of ACM Special
Interest Group on Knowledge Discovery and Data Mining (SIGKDD). He
is an ACM fellow and an IEEE senior member and received the ACM
SIGKDD Innovation Award (2004) and IEEE Computer Society
Technical Achievement Award (2005).

Chun Li received the bachelor’s degree in
computer science from the Department of
Computer Science and Technology, Tsinghua
University, Beijing, in 2006. He is currently a
graduate student in the same department at
Tsinghua University. His research interests
mainly include data mining and knowledge
discovery, especially sequential pattern mining
and its applications on bio-data.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG ET AL.: FREQUENT CLOSED SEQUENCE MINING WITHOUT CANDIDATE MAINTENANCE 15

