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Abstract
Consecutive pattern mining aiming at finding sequential
patterns substrings, is a special case of frequent pattern
mining and has been played a crucial role in many re-
al world applications, especially in biological sequence
analysis, time series analysis, and network log mining.
Approximations, including insertions, deletions, and sub-
stitutions, between strings are widely used in biological
sequence comparisons. However, most existing string
pattern mining methods only consider hamming distance
without insertions/deletions (indels). Little attention
has been paid to the general approximate consecutive
frequent pattern mining under edit distance, potentially
due to the high computational complexity, particularly
on DNA sequences with billions of base pairs. In this
paper, we introduce an efficient solution to this problem.
We first formulate the Maximal Approximate Consecu-
tive Frequent Pattern Mining (MACFP) problem that
identifies substring patterns under edit distance in a long
query sequence. Then, we propose a novel algorithm
with linear time complexity to check whether the support
of a substring pattern is above a predefined threshold
in the query sequence, thus greatly reducing the compu-
tational complexity of MACFP. With this fast decision
algorithm, we can efficiently solve the original pattern
discovery problem with several indexing and searching
techniques. Comprehensive experiments on sequence
pattern analysis and a study on cancer genomics applica-
tion demonstrate the effectiveness and efficiency of our
algorithm, compared to several existing methods.

1 Introduction
Consecutive pattern mining, also known as string pattern
mining, is one of the most important problem in the
field of frequent pattern mining [4, 3, 6, 21, 7, 4]. Briefly,
given a set of data sequences, the problem is to discover
subsequences that are frequent, i.e. occurring more
than or equal to a minimum support threshold (σ),
where σ is a user-defined parameter. Mining frequent
consecutive patterns has been widely applied in many

real-world problems, including those in bioinformatics,
time series analysis, and computer networks. Currently,
mining consecutive repeats (i.e., frequent consecutive
patterns) is one of the most important methods and
techniques in bioinformatics for studying functions
of biological molecules, including DNA, RNA, and
proteins. Similar molecular subsequence motifs often
imply specific biological functions. As the biological
data repositories growing explosively in recent years,
efficient algorithms to identify string patterns becomes a
pressing need. String data structures [32, 15] have been
utilized extensively to find all of the exact consecutive
repeats and patterns in both linear time and space
complexity. However, these methods only take care
of exactly matched repeats and patterns; but in practice,
the repeats and patterns may differ slightly in different
occurrences. For example, even today’s most advanced
DNA sequencing machines would produce sequencing
errors with a small yet non-negligable rate. In addition,
the mutational process in organisms can introduce
mutations or shifts on random locations in DNA, RNA
or protein sequences [21]. Similarly, in network analysis,
the malicious behaviors, even from the same malware
program, could appear slightly different among payload
traffic logs [33]. Therefore, mining consecutive patterns
is not a well-solved problem, as shown in Example 1.

Example 1. (Why Approximate and Edit Dis-
tance?) Let the dataset contain the following three
DNA sequences and the minimum support threshold (σ)
be 3. First of all, they are not same only due to a small
amount of differences. Even by considering Hamming
Distance ≤ 1, none of them will be treated as a frequent
pattern since C is missing in the third sequence.

...ACCGTGTAGGTCG...

...ACCGTTTAGGTCG...

...AC GTGTAGGTCG...
However, if we formulate the matching by Edit Distance
(which will make the problem harder than Hamming
Distance), the three sequences above can be discovered
as frequent patterns. This will be very useful for DNA



analysis where insertions and deletions are very common.

Considering that patterns, especially long ones, may
occur multiple times with slight differences, there is a
need to formulate a new frequent approximate pattern
mining problem, by defining approximate supports. Pre-
vious research on finding DNA repeats (i.e., frequent con-
secutive patterns when σ = 2) mainly choose Hamming
Distance to define the approximate matching. REPut-
er [18] is the closest effort toward mining frequent approx-
imate consecutive patterns under Hamming Distance.
Recently, some novel and special rules and Trie-based
data structure is also proposed to further improve the
efficiency [27]. However, they can only discover patterns
with two occurrences and mismatches at identical posi-
tions across the support set. It is hard to extend them
from σ = 2 to general σ values. Moreover, Hamming
Distance cannot capture the differences of insertions
and deletions, as shown in Example 1. Therefore, it is
necessary to develop a novel and efficient algorithm for
general settings under a new distance measure, such as
Edit Distance.

Due to the downward closure property (i.e., any
subset of a frequent pattern is also frequent), there exist
an explosive number of frequent patterns. Both closed
and maximal patterns are compressed patterns. But
for approximate pattern mining, such as DNA sequence
analysis, maximal pattern is more concise since each
maximal may contain many shorter closed patterns with
different support frequencies. Nevertheless, despite that
one can apply an exhaustive search algorithm on small
scale datasets, the computational cost for finding such
patterns on large datasets, e.g., human genome with
billions of base pairs, is still unacceptable.

Based on the above discussion, we formulate the
problem of mining Maximal Approximate Consecutive
Frequent Patterns (MACFP) and provide an efficient
and scalable solution. The main contributions of this
study are as follows.
• This is the first study (to the best of our knowledge)

that formulates the general problem of Maximal
Approximate Consecutive Frequent Pattern Mining
(MACFP) using edit distance.
• Several key properties are discovered and proved, and

an efficient algorithm is developed to find out all
maximal approximate consecutive frequent patterns.
• We provide a theoretical analysis of its time complexi-

ty and then empirically demonstrate the effectiveness
and efficiency of the proposed algorithm on different
datasets.
• We demonstrate the practical usage of the algorithm

at detecting short tandem repeats and copy number
variations in cancer genomics.

2 Related Work
Mining Repeats in Bioinformatics. Repeat-related
problems are well studied in the fields of bioinformat-
ics [1]. Finding tandem repeats, i.e., the substrings
(approximately) repeated at least k times consecutive-
ly, is firstly proposed and resolved in the form of exact
matching [5]. Approximate tandem repeats problems
under Edit Distance or Hamming Distance is solved and
improved by divide-and-conquer algorithms utilizing the
property of consecutive occurrences [17, 29]. However,
as long as the occurrences of patterns are not restricted
to be adjacent, the previous tools lose their key property
for acceleration and thus become inefficient. Discovering
all exact matched repeats can be perfectly solved by
Suffix Tree [26]. For those approximate repeats algo-
rithms [18, 27], although they are efficient when σ = 2,
they are specially designed for “at least twice”. For ex-
ample, the extension techniques in REPuter [18] require
mismatches are at identical positions across the support
set. Therefore these methods are difficult to be tailored
in our settings due to the general support threshold.
General Pattern Mining. Consecutive frequent pat-
terns take crucial roles in many fields, such as periodic
patterns in temporal data sequence [14], clicking pattern-
s in a large web database [10], patterns like copy-paste
bugs in software [22, 23], and closed repetitive gapped se-
quential patterns [8]. Apriori-based approaches [30, 28]
typically fail to attack this problem due to the exponen-
tial number of intermediate patterns (itemsets). Pattern
fusion algorithm [35] generates larger itemsets by merg-
ing smaller frequent itemsets with similar numbers of
occurrences, such that many of the medium-size frequen-
t itemsets are skipped and thus be efficient. However,
itemset is a little different from pattern, especially when
assembling. We can simply use the set union to assemble
different small itemsets, but the order of small patterns
should be considered when merge. Therefore, the prob-
lem of mining long frequent consecutive patterns faces
greater challenges. Approximate pattern mining under
Hamming Distance is addressed by aligning the long pat-
terns by small chunks [34]. We are also using the ideas
of small chunks, however, due to allowing insertions and
deletions in Edit Distance, directly applying the original
alignment algorithm becomes almost impossible. String
similarity search supporting edit distance [24] is also
related to our problem. However, it is focused on short
strings and the number of its candidate strings is much
smaller than ours.

3 Preliminaries
3.1 Notations Let S be a string of length |S| = n.
Si denotes the i-th character of S. The alphabets set of
S, i.e., {c|∃i, Si = c}, is represented by Σ (e.g., for DNA



sequences, Σ = {A,C,G, T}). For any pair (i, j), where
i ≤ j, we can get a substring Si,j from i-th character to
j-th character (both inclusive).

For two substrings Si,j and Sx,y, we define their
distance by the Edit Distance. That is, d(Si,j , Sx,y)
describes the minimum number of edit operations (in-
sertion, deletion, and substitution) needed to transform
string Si,j to string Sx,y.

3.2 Problem Formulation We first define equiva-
lence between two substrings.

Definition 1. (Approximate) Equivalent Neigh-
bors. Two substrings Si,j and Sx,y are (approximate)
equivalent neighbors if and only if their edit distance
d(Si,j , Sx,y) is no more than a given distance threshold
k, i.e., d(Si,j , Sx,y) ≤ k.

In the real world application, such as DNA pattern
mining, the distance threshold k is typically small,
because people are only interested in those slightly
different DNA substrings (e.g., at the length of O(logn)).

Example 2. Given k = 2, ACGACA and ACGTACG
are approximate equivalent, because their distance is 2.
However, AACCGA and ACCAAG are not, since their
distance is 4.

The simple counting of the equivalent occurrences as
the support will not work properly in the approximate
scenario. For example, when k = 3, there are many
trivial approximate neighbors for substring Si,j , such
as Si−3,j , Si−2,j , Si−1,j , Si+1,j , Si+2,j , Si+3,j , Si,j−3,
Si,j−2, Si,j−1, Si,j+1, Si,j+2, Si,j+3, etc. This kind of
trivial approximate neighbors makes the simple counting
becomes large and meaningless. Therefore, for a given
substring Si,j , we propose the following formal definition
for its approximate support.

Definition 2. Approximate Support sup(Si,j).
The approximate support of Si,j is the maximum number
p, such that there exist p disjoint equivalent neighbors.
That is, there exist

l1 ≤ r1 < l2 ≤ r2 < . . . < lx = i ≤ rx = j < . . . < lp ≤ rp

where, ∀q(1 ≤ q ≤ p), d(Si,j , Slq,rq
) ≤ k.

Similar ideas of using maximal number of non-
overlapping windows as a support for sequential patterns
have also been suggested in [19].

Example 3. Given a string

S = AGCTAGCAGAGCT

and the distance threshold k = 1, the sup(S1,4 =
AGCT ) = 3. One possible plan is shown below.

dAGCT cdAGCAcGdAGCcA

where, dc highlights the approximate neighbors of AGCT .

Definition 3. Approximate Consecutive Fre-
quent Pattern (ACFP). A substring Si,j is called
Approximate Consecutive Frequent Pattern, if and only
if sup(Si,j) is no less than a given threshold σ, i.e.
sup(Si,j) ≥ σ.

It is worth noting that, in previous research of DNA
repeats (i.e. σ = 2), they also require the repeat should
be somewhere else, which is also consistent with our
disjoint requirement.

Example 4. Based on the previous example, if σ = 3,
S1,4 = AGCT is an ACFP, because sup(S1,4) = 3 ≥ σ.
However, S1,5 = AGCTA is not an ACFP, because
sup(S1,5) = 2 < σ.

Definition 4. Maximal Approximate Consecu-
tive Frequent Pattern (MACFP). An ACFP Si,j
is called MACFP, if and only if

• |Si,j | ≥ L, i.e. it is long enough.

• Si−1,j and Si,j+1 are not ACFP.

Here, L is a length threshold to focus on long patterns.

Example 5. Based on the previous example, if L = 3,
S1,4 = AGCT is a MACFP, because it is a long-enough
ACFP; S1,5 is not an ACFP, and S0,4 is not a valid
substring.

Our objective is to find all MACFP, given string s,
edit distance threshold k, minimum support threshold σ,
and length threshold L. To the best of our knowledge,
this is the first work that formulates and attacks such
a general maximal approximate consecutive frequent
pattern mining (MACFP) problem.

3.3 Exact Consecutive Pattern Mining Exact
consecutive pattern mining, as a special case of our
problem (k = 0), is well studied before. In this paper,
we directly use the state-of-the-art algorithms as our
weapons to resolve the more general problem. We utilize
the exact pattern mining algorithm with linear time
and memory, which takes the advantage of indexing all
suffixes of S by Suffix Array [15]. Techniques like suffix
ordering, the longest common prefix (LCP) intervals [2]
and range minimum query (RMQ) [9] provide great
help for our further approximate pattern mining, by
supporting O(1) longest common prefix query for any
pair of Si,n and Sj,n after O(n) pre-computation.



4 Methodology
We first reduce the pattern mining problem (a search
problem) to support checking problem (a decision
problem) and propose a novel and efficient framework
to reduce the number of querying the support of
some specified substrings from O(n2) to O(n) and
also demonstrate its necessity. Then we focus on
how to efficiently calculate the support of a specified
substring. By discovering several important properties,
novel techniques are developed to solve the problem
efficiently, such as efficient expanding, lower bound
pruning, and fast chunk indexing.

4.1 Support Checking Framework In order to get
rid of tremendous medium-length patterns, we propose
to attack the MACFP mining problem via a novel angle
different from traditional pattern growth ideas. The
new idea is that reducing the MACFP mining problem
into the decision problem: checking the approximate
support of each substring. More specifically, we assume
that there is an oracle which can instantly tell us the
approximate support of any substring Si,j and we try to
minimize the number of times to query the oracle. The
efficient calculation of approximate support of substrings
will be discussed in later sections.

Based on the definition of pi, we can easily develop
a bruteforce algorithm, which checks the supports of
all substring of Si,j and then figures out all MACFPs.
In the worst cases, the number of times to check the
support of some substring is O(n2). However, there is
still some room to improve it since we actually have only
O(n) MACFPs.

We first have Lemma 1 as following, which is quite
intuitive (see proof in supplementary material).

Lemma 1. Pattern Anti-Monotonicity, If Si,j is a
approximate consecutive frequent pattern, so are Si+1,j
and Si,j−1.

Definition 5. Extremal Pattern Position pi,
which is the farthest position j such that Si,j is an
approximate consecutive frequent pattern, that is,

pi = max{j|sup(Si,j) ≥ σ}(4.1)

Note that “extremal” is different from “maximal”,
because the left side of Si,pi still have chances to be
extended further.

Example 6. p1 = 4 when S = AGCTAGCAGAGCA,
k = 1 and σ = 3.
Lemma 2. Monotonicity of pi.

∀2 ≤ i ≤ n, pi ≥ pi−1(4.2)

Algorithm 1: Support Checking Framework
Require: A string S, parameters k, σ
Return: ∀i ≤ n, extremal pattern positions pi
Time Complexity: O(n) times of support
checking
p0 ← 0
for i = 1 to n do

j ← pi−1
while j + 1 ≤ n and sup(Si,j+1) ≥ σ do

j ← j + 1
pi ← j

return p

Proof. Si−1,pi−1 is an approximate consecutive frequent
pattern, implies sup(Si,pi−1) ≥ σ, and thus pi ≥ pi−1.

Utilizing the monotonicity of pi, we optimize the
number of times of support checking from O(n2) to O(n)
as shown in Algorithm 1. An important observation
is that both i and j are non-decreasing all the time
and after each support checking of the substring Si,j , at
least one of them is increased by 1. Therefore, the total
times of support checking is at most 2n, which is O(n).
Meanwhile, there are at most O(n) MACFPs in total,
which makes O(n) times of support checking necessary.

4.2 Efficient Support Computation We propose
an efficient algorithm to compute the approximate
support for any substring Si,j in the expectation time
complexity O(k3k n

|Σ|b
L

k+1 c
).

4.2.1 From Neighbors to Non-overlapping
Neighbors As mentioned in the problem formula-
tion, we define the maximum number of disjoint (non-
overlapping) equivalent neighbors as our approximate
support. It is hard to directly find and only find those
equivalent neighbors in the maximum disjoint solution.
Therefore, we can find a set of “necessary” equivalent
neighbors and then compute the approximate support,
which is a classical interval scheduling problem. Lem-
ma 3 (proof in supplementary file) allows us to focus on
these extremely small equivalent neighbors when calcu-
lating the approximate support, which helps us greatly
reduce the number of “necessary” equivalent neighbors.

Lemma 3. Suppose Su+1,v or Su,v−1 is an equivalent
neighbor of Si,j , the sup(Si,j) is same if we ignore Su,v.

4.2.2 Efficient Expanding To compute the edit dis-
tance, dynamic programming algorithm avoids exponen-
tial searches by recording all previous states, while the
naive way is to enumerate all possible operations at those



Algorithm 2: Efficient Expanding
Require: a substring Sl,r, a suffix Sv,n, and
distance threshold k
Return: ∀i ≤ k, qi = min{j|d(Sl,r, Sv,j) ≤ i}
Time Complexity: O(3k)
vector q ← +∞, C ← {(l, v, 0)}
while |C| > 0 do

Get a triplet (x, y, d) and remove it from C
if x = r + 1 then

qd ← min{qd, y}
continue

if Sx = Sy then
δ ← min{lcp(Sx,n, Sy,n), r − x+ 1}
C ← C ∪ {(x+ δ, y + δ, d)}

else
for δx = 0 to k − d do

for δy = 0 to k − d do
if x+ δx = r + 1 or
Sx+δx

= Sy+δy
then

C ← C ∪ {(x+ δx, y + δy, d+
max(δx, δy)}

for i = 0 to k − 1 do
qi+1 ← min{qi, qi − 1}

return vector q.

points and try all possible combinations, which is O(3k).
However, in our problem settings, there is an edit dis-
tance threshold k which is typically O(logL) and thus
O(3k) is O(Lc log 3) which is cheap. Here c is a constant
coming from that k ≤ c logL.

Lemma 4. Greedy Matching. For two strings s and
t, if s1 = t1, it is better to match them when calculating
edit distance between strings s and t. That is, d(s, t) =
d(s2,|s|, t2,|t|) if s1 = t1.

Proof. This property is utilized in the traditional dy-
namic programming algorithm for computing edit dis-
tance [25]. It also fits human intuition that the matches
in both ends are good to use rather than to edit.

Moreover, based on Lemma 4, we can also make sure
that after several consecutive operations, the two new
positions should be matched each other. Therefore, an
efficient expanding algorithm, as shown in Algorithm 2,
provides another choice for us to replace the dynamic
programming and get rid of the length of string |s| in the
time complexity. This improvement will be significant
when the length of string becomes long.

4.2.3 Fast Chunk Indexing
Lemma 5. Exact Chunks. After segmenting Si,j into
k + 1 chunks, for any equivalent neighbor of Si,j, there
exists an exact matched chunk.

Algorithm 3: Fast Chunk Indexing
Require: a substring Sl,r, distance threshold k
Return: its approximate support
Time Complexity: expected O(k3k n

|Σ|b
r−l+1

k+1 c
)

C ← ∅, ε← b r−l+1
k+1 c

for i = 1 to k + 1 do
s← l + i · ε, t← l + (i+ 1) · ε− 1
// exact occurrences querying
for all Su,v = Ss,t do

d1 ← lower bound between S∗,u and Sl,s
d2 ← lower bound between Sv,∗ and St,r
// lower bound pruning
if d1 + d2 > k then

continue
// call efficient expanding twice
qlx ← max{j|d(Sl,u+1, Sj,s−1) ≤ x}
qry ← min{j|d(Sv+1,r, St+1,j) ≤ y}
for x = 0 to k do

for y = 0 to k − x do
C ← C ∪ {(qlx, qry)}

return maximum non-overlap intervals in C

Proof. Because the edit distance threshold is k and the
Pigeonhole principle, there is at least one chunk that is
exactly matched.

As shown in Algorithm 3, it finally makes the expect-
ed time complexity of our method in O(nk3k n

|Σ|b
L

k+1 c
)

by incorporating the support checking framework and
efficient expanding algorithms together. The analysis
goes as following: 1) the size of each chunk is at least
O(b L

k+1c); 2) there are O(|Σ|b
L

k+1 c) distinct chunks in
total; 3) there are O(n) length-L substrings in S; 4)
assuming the string is randomly generated, the expec-
tation of occurrences of a chunk is n

|Σ|b
L

k+1 c
. Moreover,

the time complexity becomes O(nLc logL logL n

|Σ|b
L

k+1 c
)

when k is O(logL). Thus it is really efficient especially
for large L.

4.2.4 Lower Bound Pruning Lower bound pruning
strategies are usually used in q-gram approximate string
processing [13]. In our paper, we also propose a similar
lower bound of edit distance as following.

Lemma 6. Lower Bound of Edit Distance.

d(s, t) ≥ max{vs,t, vt,s}(4.3)

where,

vs,t =
∑
c∈Σ

max{countc(s)− countc(t), 0}(4.4)



and countc(s) is the number of character c in string s.

Proof. When proving the lower bound, we can assume
all the same characters match each other in strings s
and t, which is the best case. The minimum cost is
max{vs,t, vt,s} in this case.

Example 7. Given two strings s = ACAGGA and
t = ACGGTT . There are 3 A’s, 1 C, and 2 G’s in s.
And t has 1 A, 1 C, 2 G’s, and 2 T’s. Based on Lemma 6,
we can compute vs,t = 2 and vt,s = 2. Therefore, the
lower bound is 2.

Using this lower bound, we can prune out some triv-
ial non-similar substrings before the efficient expanding
algorithm is performed, which makes our method much
more efficient. More specifically, given a substring sl,r,
when we are considering the potential equivalent neigh-
bors among the substring starting from index u, i.e., the
substrings su,∗, we can calculate a lower bound of dis-
tances to pre-check whether we need to run the efficient
expanding algorithm to do further checking (algorithm
in supplementary file).

5 Experiments
We evaluate the performance of our proposed approach
and explore the speedup techniques used in the approach
under different parameter settings.

5.1 Datasets DNA sequence is one of application
scenarios of our method. Therefore, to evaluate the run
time of our approach on the data of various sizes, we
select the following 3 datasets with different DNA string
lengths n from Human Genome DNA Sequence.
The alphabet set for DNA sequence is Σ = {A,C,G, T}.
• Small Dataset, n =10K, culled from chr1;
• Medium Dataset, n =100K, culled from chr1;
• Large Dataset, n =1M, culled from chr6.
As analyzed before, our proposed method MACFP will
be faster when the alphabet set Σ is larger, due to our
pruning and indexing techniques. As a result, DNA
sequences consisting of only 4 different symbols reflect
almost the worst case of MACFP in running time.

5.2 Experiment Setting All experiments are per-
formed on a local machine with Intel(R) Xeon(R) CPU
E3-1240 @3.4GHz and 8GB memory. Although many
parts of our algorithms could be parallelized, in the pur-
pose of evaluating the algorithmic efficiency, we only
allow a single thread during experiments.

We have 4 methods as introduced below.
• TDP finds all approximate neighbors of Sl,r starting

from i-th position via a widely used dynamic pro-
gramming [31, 16] in O((r − l)k) time. Fitting into

Table 1: Values for different parameters.
Parameter Values (bold is default)

Edit Distance Threshold k 1, 2, 3, 4, 5
Length Threshold L 30, 40, 50, 60, 70
Minimum Support σ 2, 3, 4, 5, 6

our linear support checking framework, its worst case
time complexity is O(n3k), while the best is O(n2Lk).
Due to its expensive running time, we only run it on
small dataset. See details in supplementary material.

• TDP+ applies Fast Chunk Indexing technique to
accelerate TDP.

• MACFP− turns off Lower Bound Pruning technique
in MACFP.

• MACFP is our proposed algorithm.
Table 1 shows the detail of the parameters. Every

time, we will change a single parameter and fix others
to their default values. On the Small dataset, there will
be no pattern if L is larger than 50. Therefore, on the
Small dataset, L ∈ {10, 20, 30, 40, 50}, and L = 30 is the
default parameter for the Small dataset.

5.3 Impact of Different Techniques As shown
in Figure 1, Figure 2, and Figure 3, although the
run time of TDP seems linear to the edit distance
k, it is still the slowest. Fast Chunk Indexing makes
TDP+ a significant improvement over TDP, because
many irrelevant positions get pruned before dynamic
programming. The advantage of MACFP− over TDP+
shows that the Efficient Expanding is very effective,
especially for long patterns (i.e. larger L). The Lower
Bound Pruning strategy demonstrates its power by
reducing the running time from MACFP− to MACFP.

5.4 Impact of Edit Distance As verified in Fig-
ure 1, the running time of our method is exponential to
k. However, MACFP still follows (even slower) the trend
of the growth of the number of total patterns, which is
very interesting but still fits human intuition because
a larger k provides more flexibility for DNA patterns
such that more patterns could be detected. That means,
MACFP only pays more efforts to get those patterns,
which could be the perfect situation.

5.5 Impact of Length Threshold Experimental
results shown in Figure 2 demonstrate the running time
of our method is inversely exponential to L. That is,
when L grows, the running time of MACFP dramatically
decreases in all three different sizes of datasets, which
agrees with our theoretical analysis. This is exciting
because scientists may only concern about the long
and abnormal patterns rather than short and common
patterns. It is worth noting that the advantage of
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Figure 1: Varying edit distance. The total number of patterns is 0 on small dataset when k = 1.
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Figure 2: Varying length threshold. The total number of patterns is 0 on small dataset when L = 50.
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Figure 4: Varying the length of the sequence.

MACFP− over TDP+ on the large dataset is very big
when the length threshold is very small. In this case, the
chunk is so short that the portions of patterns remained
to check are large, which implies Efficient Expanding is
much faster than Tailored Dynamic Programming.

5.6 Impact of Minimum Support The theoretical
time complexity is not directly related to σ, because we
are using the novel support checking framework which
gets rid of pattern growth procedures. Therefore, we
only vary its values between 2 and 6, aiming to explore
the performance when even infrequent patterns appear
in the dataset. As shown in Figure 3, the running times
except for TDP are almost same when σ varies, which
is consistent with our analysis.

5.7 Scalability By concatenating DNA sequences
from different human genes, we finally assembled a billion

length dataset. By setting σ = 4, k = 3, L = 180,
MACFP outputs 505, 362 patterns using about 50 hours.
As shown in Figure 4, by plotting this and other default
settings’ results, one can observe that the running time
is always following the number of patterns and are log-
linear to the length of the sequence. Moreover, the
processing can be parallelized and thus should be a useful
approach for billion length sequence. We will report
additional performance results with varied parameters
for this extremely large dataset in the revised version,
after more extensive performance study is conducted.

6 Applications
In many cancer studies, people have found the DNA
sequences of patients have abnormally highly repetitive
regions, which were not found in normal people’s DNAs.
Specifically, there are two categories of such observations:
(i) short tandem repeat, in which there exists a short
piece of normal DNA sequence fragment, consecutively
repeated with a large number of copies and inserted at
the same location where the normal substring occurs, and
(ii) copy number variation, where the repeated fragment
is much longer while the times it gets repeated is smaller.
Further, in practice, it is impossible to get complete
DNA sequences from patients using existing technologies.
Instead, scientists use sequencing machines which first
cut the full-length DNA sequences into short pieces
or reads and then using chemical methods to readout
the content of these short reads. A reasonable length
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Figure 3: Varying minimum support.

of these short reads is 100 which is the length of reads
generated from the most widely used Illumina sequencing
machine. Meanwhile, the DNA sequences obtained from
sequencing machines are always noisy such that exact
repeats are unsuitable for these problems. To evaluate
our method in these real-world scenarios, we design a
synthetic experiment as follows.

1. Select a length-n sequence S at the beginning of chr1
of human as the normal DNA sequence.

2. Sample a length-m subsequence s with relatively high
entropy from S as the fatal subsequence.

3. Duplicate s for T times. We allow at most 1 edit
distance (10% probability per edit type) for potential
variation in each copy. The new (patient) DNA
sequence is denoted by P .

4. Random access length-100 subsequence n times from
the patient DNA sequence P . Concatenate them
together with the normal DNA sequence S to get a
long (about n× 100) DNA sequence for diagnose.

Traditionally, the read mapping and counting (de-
noted as RMC in this paper) technique is widely used,
which uses matching algorithms, such as BWA [20] and
mrsFAST [12, 11] to find all the matched positions of
the gene fragments on the normal DNA sequence S, and
then visualize these matches and focus on the most heat-
ed regions. However, due to the self-similarity inside
the reference sequence and also the sequencing errors of
reads, the result is always not optimal and often misses
the correct region. Now scientists can run the MACFP
algorithm to efficiently figure out the potential fatal re-
gion. We choose different parameters according to the
short tandem repeat (n = 10, 000, m = 50, and T = 100)
and copy number variation (n = 10, 000, m = 1, 000,
and T = 20) problems.

As shown in Figure 5 and Figure 6, MACFP can
always identify the repetitive DNA region more correctly
and clearly. However, in Figure 5, RMC finds several
peaks and the highest one is around 1,000 while the
correct one is actually about the third or fourth peak.
Therefore, RMC may even mislead scientists in this case.
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Figure 5: Short tandem repeats. The repetitive region
is [2125, 2174]. MACFP: k = 1, σ = 500, L = 50
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Figure 6: Copy number variation. The repetitive region
is [1535, 2534]. MACFP: k = 1, σ = 20, L = 100
7 Conclusions
In this paper, we formulated the general problem
of maximal approximate consecutive frequent pattern
mining using edit distance, and developed a novel
algorithm MACFP that efficiently solves this problem.
Comprehensive experimental results demonstrated the
effectiveness and efficiency of our algorithm compared
to existing methods. Furthermore, we have successfully
applied our algorithm on two important applications
in genomics, with significant improvements over the
widely used bioinformatics method. In future, we plan
to develop readily usable tools for DNA pattern mining
problems by further considering reverse complementation
and handling paired-end reads.
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1 Applications
In this section, we present two more synthetic cases to
demonstrate the power of MACFP in repetitive region
detection. We mainly study the performance when the
length of repetitive region is extremely short and very
long. More specifically,

1. A huge number of repeats of a short region, which
corresponds to the short tandem repeat problem.
More specifically, n = 10, 000, m = 10, and T =
1, 000.

2. Reasonably many repeats of a large chunk, which cor-
responds to copy number variation. More specifically,
n = 10, 000, m = 5, 000, and T = 10.
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Figure 1: Real World Application Scenario 3: Extremal
short tandem repeats. More specifically, n = 10, 000,
m = 10, and T = 1, 000. In our experiment, the
repetitive region is located between 501 and 510.

In the third scenario (i.e., extremal short tandem
repeats), the repetitive region is located between 501
and 510. As shown in Figure 1, RMC finds several
peaks and the highest one is around 1,000. However, the
correct region between 501 and 510 is actually a valley.
Therefore, RMC will mislead scientists in this case. On
the other hand, MACFP (k = 1, σ = 5, 000, and L = 10)
finds only three candidate positions including the correct
one, which is much more efficient and clear.

In the forth scenario (i.e., the long copy number
variation problem), the repetitive region is located
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Figure 2: Real World Application Scenario 4: long
copy number variation. More specifically, n = 10, 000,
m = 5, 000, and T = 10. In our experiment, the
repetitive region is located between 1,534 and 6,533.

between 1,534 and 6,533. As shown in Figure 2, RMC
finds an obvious peak and it is the correct one. In
this scenario, the length of pattern is longer than the
random accessed strings; therefore, we can only mine
some short pattern and try to assemble them together.
Interestingly, by plotting the short patterns we mined by
MACFP (k = 1, σ = 10, and L = 100), there is a clear
consecutive regions between 1,534 and 6,533, which can
guide the scientists correctly.

In summary, the MACFP algorithm can identify the
repetitive DNA region more correctly and clearly than
the widely-used RMC method which directly matches the
short reads onto the reference DNA sequences, especially
when the length of repetitive region is shorter than the
length of short reads.

Both experiments show that the MACFP algorithm
can identify the repetitive DNA region more correctly
and clearly than the widely-used RMC method which
directly matches the short reads onto the reference DNA
sequences.

2 Proofs
Lemma 1. Pattern Anti-Monotonicity. If Si,j is a
frequent approximate consecutive pattern, Si+1,j and
Si,j−1 are also frequent approximate consecutive pattern-



s.

Proof. Suppose sup(Si,j) = p ≥ σ is computed from
the following sequence of non-overlapped approximate
equivalent substrings

l1 ≤ r1 < l2 ≤ r2 < . . . < lx = i ≤ rx = j < . . . < lp ≤ rp

where, ∀q(1 ≤ q ≤ p), d(Si,j , Slq,rq ) ≤ k.
Considering a specific approximate equivalent sub-

strings Slq,rq , where

d(Si,j , Slq,rq ) ≤ k

Because edit operations include the insertions and
deletions, at least one of the followings should be true
depending on whether Si matches Slq in the distance
calculation.

• d(Si+1,j , Slq,rq ) ≤ k, if Si does not match Slq .

• d(Si+1,j , Slq+1,rq ) ≤ k, if Si matches Slq .

Therefore, we can use either the same (lq, rq) or the
shrunk (lq + 1, r) substring for Si+1,j , and thus we have
the following sequence of non-overlapped approximate
equivalent substrings for Si+1,j

l′1 ≤ r1 < l′2 ≤ r2 < . . . < l′x = i+1 ≤ rx = j < . . . < l′p ≤ rp

where, ∀q(1 ≤ q ≤ p), d(Si,j , Sl′q,rq ) ≤ k, and l′q is either
lq or lq + 1, as we demonstrated before. This sequence
proves that sup(Si+1,j) ≥ p ≥ σ.

Similar arguments could be made for sup(Si,j−1) ≥
σ.

LEMMA 3. Suppose Su+1,v or Su,v−1 is an equivalent
neighbor of Si,j , the approximate support of Si,j is same
even if we ignore Su,v.

Proof. If there is no solution, which achieves the maxi-
mum number of non-overlapping equivalent neighbors
of Si,j , involves Su,v, the lemma holds obviously since
less equivalent neighbors considered will also lead to no
solution.

Otherwise, assume in a solution which achieves
the maximum number of non-overlapping equivalent
neighbors of Si,j , there exists at least one substring
S(u, v), which is not extremely small. That is, at least
one of Su+1,v and Su,v−1 is also an equivalent neighbor of
Si,j . Therefore, we can replace Su,v using its substring
while not violating the disjoint condition. Therefore,
the maximum number of non-overlapping equivalent
neighbors keeps the same if we ignore Su,v.

This process could be applied recursively until the
non-overlapping equivalent neighbors are all extremely
small. In conclusion, only extremely small equivalent
neighbors matter.

3 Algorithms
3.1 Tailored Dynamic Programming (TDP)
Considering the lower bound of edit distance, we can
ignore the pairs of substrings which are too different
on the lengths. This helps us prune many unnecessary
states in the classical dynamic programming for edit
distance [3, 1], as illustrated in Figure 3.

|t|

|s
|

k

k

Edit Distance > k

Edit Distance > k

1

1

Figure 3: Illustration for Tailored Dynamic Program-
ming

By utilizing this idea, we can have Algorithm 1.

Algorithm 1: Tailored Dynamic Programming
Require: a short string s, a long string t, and
distance threshold k
Return: ∀0 ≤ i ≤ k, qi = min{j|d(s, t0,j) ≤ i}
Time Complexity: O(|s|k)
f∗,∗ ← k + 1
f1,0 ← 0
for i = 1 to |s| do

for δ = −k to k do
j ← i+ δ
// insert si before tj / delete si
fi+1,δ−1 ← min{fi+1,δ, fi,δ + 1}
// insert tj before si / delete tj
fi,δ+1 ← min{fi,δ+1, fi,δ + 1}
// match/replace si and tj
fi+1,δ ← min{fi,δ+1, fi,δ + (si 6= tj)}

vector q ← +∞
for δ = k downto −k do

j ← i+ δ
if f|s|+1,δ ≤ k then

qf|s|+1,δ ← j
return vector q

3.2 Lower Bound Pruning We present the details
of applying lower bound pruning in Algorithm 2.

3.3 From Neighbors to Non-overlapping Neigh-
bors As mentioned in the problem formulation, we de-



Algorithm 2: Lower Bound Pruning
Require: two substrings Sl,r and Su,∗, edit
distance threshold k
Return: the lower bound of ∀v, d(Sl,r, Su,v)
Time Complexity: O(|Σ|) after O(|S||Σ|)
pre-processing
v1, v2 ← 0
for c ∈ Σ do

c1 ← counts of c in Sl,r
cupper ← counts of c in Su,u+r−l+k
clower ← counts of c in Su,u+r−l−k
if c1 > cupper then

v1 ← v1 + c1 − cupper
if c1 < clower then

v2 ← v2 + clower − c1
return max{v1, v2}

fine the maximum number of disjoint (non-overlapping)
equivalent neighbors as our approximate support. We
propose a post-processing algorithm as shown in Algo-
rithm 3 to help us compute the approximate support.
Because it is a classical interval scheduling problem [2],
the correctness is proved in previous work. Thus we
omit the proof here.

Algorithm 3: Maximum Non-overlapping Inter-
vals

Require: A set of substrings C
Return: A maximum set of non-overlapped
substrings
Time Complexity: O(|C|log|C|), using
comparison-based sorting
Sort C increasingly by right ends
M ← ∅
rmax ← −∞
for Sl,r in C do

if l > rmax then
rmax ← r
M ←M ∪ {Sl,r}

return M

4 Experiments
The details of the running time are offered in Table 1.
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Table 1: Run time in seconds (average from 10 runs) and the numbers of identified patterns.
Small Dataset Medium Dataset Large Dataset

parameter TDP MACFP # Patterns MACFP # Patterns MACFP # Patterns

k

1 527.35 0.05 0 1 0.53 22 1 6.22 316
2 682.90 0.14 16 2 1.75 145 2 24.02 2,438
3 857.63 0.61 67 3 8.87 573 3 107.49 5,797
4 1059.92 3.52 189 4 43.08 1,264 4 532.19 10,340
5 1267.16 24.38 340 5 197.72 2,149 5 3631.55 15,313

L

10 1112.62 54.07 6143 30 38.86 3,754 30 991.06 22,061
20 878.41 3.82 379 40 18.07 1,727 40 202.05 12,072
30 857.63 0.61 67 50 8.87 573 50 106.06 5,797
40 853.84 0.24 5 60 4.29 103 60 59.12 2,355
50 853.43 0.15 0 70 2.493 32 70 34.61 831

σ

2 1053.02 0.90 311 2 12.67 1,059 2 103.53 10,208
3 921.51 0.74 145 3 9.61 783 3 106.56 7,004
4 857.63 0.61 67 4 8.87 573 4 107.07 5,797
5 820.90 0.55 31 5 7.50 457 5 108.93 4,983
6 798.27 0.50 15 6 7.35 308 6 108.88 4,179
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