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Abstract
With the rapid development of computer and information technology in the last several decades, an enormous

amount of data in science and engineering has been and will continuously be generated in massive scale, either
being stored in gigantic storage devices or flowing into and out of the system in the form of data streams. Moreover,
such data has been made widely available, e.g., via the Internet. Such tremendous amount of data, in the order
of tera- to peta-bytes, has fundamentally changed science and engineering, transforming many disciplines from
data-poor to increasingly data-rich, and calling for new, data-intensive methods to conduct research in science and
engineering.

In this paper, we discuss the research challenges in science and engineering, from the data mining perspective,
with a focus on the following issues: (1) information network analysis, (2) discovery, usage, and understanding
of patterns and knowledge, (3) stream data mining, (4) mining moving object data, RFID data, and data from
sensor networks, (5) spatiotemporal and multimedia data mining, (6) mining text, Web, and other unstructured
data, (7) data cube-oriented multidimensional online analytical mining, (8) visual data mining, and (9) data mining
by integration of sophisticated scientific and engineering domain knowledge.

1.1 Introduction

It has been popularly recognized that the rapid development of computer and information technology in the last
twenty years has fundamentally changed almost every field in science and engineering, transforming many disciplines
from data-poor to increasingly data-rich, and calling for the development of new, data-intensive methods to conduct
research in science and engineering. Thus the new terms like, data science or data-intensive engineering, can be
used to best characterize the data-intensive nature of today’s science and engineering.

Besides the further development of database methods to efficiently store and manage peta-bytes of data online,
making these archives easily and safely accessible via the Internet and/or a computing grid, another essential task
is to develop powerful data mining tools to analyze such data. Thus, there is no wonder that data mining has also
stepped on to the center stage in science and engineering.

Data mining, as the confluence of multiple intertwined disciplines, including statistics, machine learning, pat-
tern recognition, database systems, information retrieval, World-Wide Web, visualization, and many application
domains, has made great progress in the past decade [HK06]. To ensure that the advances of data mining research
and technology will effectively benefit the progress of science and engineering, it is important to examine the
challenges on data mining posed in data-intensive science and engineering and explore how to further develop the
technology to facilitate new discoveries and advances in science and engineering.
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1.2 Major research challenges

In this section, we will examine several major challenges raised in science and engineering from the data mining
perspective, and point out some promising research directions.

1.2.1 Information network analysis

With the development of Google and other effective web search engines, information network analysis has become
an important research frontier, with broad applications, such as social network analysis, web community discovery,
terrorist network mining, computer network analysis, and network intrusion detection. However, information net-
work research should go beyond explicitly formed, homogeneous networks (e.g., web page links, computer networks,
and terrorist e-connection networks) and delve deeply into implicitly formed, heterogeneous, and multidimensional
information networks. Science and engineering provide us with rich opportunities on exploration of networks in
this direction.

There are a lot of massive natural, technical, social, and information networks in science and engineering ap-
plications, such as gene, protein, and microarray networks in biology; highway transportation networks in civil
engineering; topic- or theme-author-publication-citation networks in library science; and wireless telecommunica-
tion networks among commanders, soldiers and supply lines in a battle field. In such information networks, each
node or link in a network contains valuable, multidimensional information, such as textual contents, geographic
information, traffic flow, and other properties. Moreover, such networks could be highly dynamic, evolving, and
inter-dependent.

Traditional data mining algorithms such as classification, market basket analysis, and cluster analysis commonly
attempt to find patterns in a dataset containing independent, identically distributed (IID) samples. One can think
of this process as learning a model for the node attributes of a homogeneous graph while ignoring the links
between the nodes. A key emerging challenge for data mining is tackling the problem of mining richly structured,
heterogeneous datasets [GD05]. The domains often consist of a variety of object types; the objects can be linked
in a variety of ways. Naively applying traditional statistical inference procedures, which assume that instances
are independent, can lead to inappropriate conclusions about the data. In fact, object linkage is knowledge that
should be exploited.

Although a single link in a network could be noisy, unreliable, and sometimes misleading, valuable knowledge
can be mined reliably among a large number of links in a massive information network. Our recent studies on
information networks show that the power of such links in massive information networks should not be underesti-
mated. They can be used for predictive modeling across multiple relations [YHYY06], for user-guided clustering
across multiple relations [YHY05], for effective link-based clustering [JW02, YHY06], for distinguishing different
objects with identical names [YHY07a], and for solving the veracity problem, i.e., finding reliable facts among
multiple conflicting web information providers [YHY07b]. The power of such links should be thoroughly explored
in many scientific domains, such as in protein network analysis in biology and in the analysis of networks of research
publications in library science as well as in each science/engineering discipline.

The most well known link mining task is that of link-based object ranking (LBR), which is a primary focus of the
link analysis community. The objective of LBR is to exploit the link structure of a graph to order or prioritize the
set of objects within the graph. Since the introduction of the most notable approaches, PageRank [PBMW98] and
HITS [Kle99], many variations have been developed to rank one type [CDG+98, Hav02, RD02] or multiple types of
objects in the graph [JW02, SQCF05]. Also, the link-based object classification (LBC) problem has been studied.
The task is to predict the class label for each object. The discerning feature of LBC that makes it different from
traditional classification is that in many cases, the labels of related objects tend to be correlated. The challenge is
to design algorithms for collective classification that exploit such correlations and jointly infer the categorical values
associated with the objects in the graph [CDI98]. Another link-related task is entity resolution, which involves
identifying the set of objects in a domain. The goal of entity resolution is to determine which references in the data
refer to the same real-world entity. Examples of this problem arise in databases (de-duplication, data integration)
[ACG02, DHM05], natural language processing (co-reference resolution, object consolidation) [PMM+02, BG06],
personal information management, and other fields. Recently, there has been significant interest in the use of
links for improved entity resolution. The central idea is to consider, in addition to the attributes of the references
to be resolved, the other references to which these are linked. These links may be, for example, co-author links
between author references in bibliographic data, hierarchical links between spatial references in geo-spatial data,
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or co-occurrence links between name references in natural language documents. Besides utilizing links in data
mining, we may wish to predict the existence of links based on attributes of the objects and other observed links in
some problems. Examples include predicting links among actors in social networks, such as predicting friendships;
predicting the participation of actors in events [OHS05], such as email, telephone calls and co-authorship; and
predicting semantic relationships such as “advisor-of” based on web page links and content [CDF+00]. Most often,
some links are observed, and one is attempting to predict unobserved links [GFKT01], or there is a temporal
aspect.

Another important direction in information network analysis is to treat information networks as graphs and
further develop graph mining methods [CH07]. Recent progress on graph mining and its associated structural
pattern-based classification and clustering, graph and graph containment indexing, and similarity search will play
an important role in information network analysis. An area of data mining that is related to link mining is the
work on subgraph discovery. This work attempts to find interesting or commonly occurring subgraphs in a set
of graphs. Discovery of these patterns may be the sole purpose of the systems, or the discovered patterns may
be used for graph classification, whose goal is to categorize an entire graph as a positive or negative instance of
a concept. One line of work attempts to find frequent subgraphs [KK01, YH07], and some other lines of work
are on efficient subgraph generation and compression-based heuristic search [WM03, CH07]. Moreover, since
information networks often form huge, multidimensional heterogeneous graphs, mining noisy, approximate, and
heterogeneous subgraphs based on different applications for the construction of application-specific networks with
sophisticated structures will help information network analysis substantially. Generative models for a range of
graph and dependency types have been studied extensively in the social network analysis community [CSW05]. In
recent years, significant attention has focused on studying the structural properties of networks [AC05], such as
the World Wide Web, online social networks, communication networks, citation networks, and biological networks.
Across these various networks, general patterns such as power law degree distributions, small graph diameters, and
community structure are observed. These observations have motivated the search for general principles governing
such networks [Cha05]. The use of the power law distribution of many information networks and the rules on
density evolution of information networks will help reduce computational complexity and enhance the power of
network analysis. Finally, the studies of link analysis, heterogeneous data integration, user-guided clustering, and
user-based network construction will provide essential methodology for the in-depth study in this direction.

Many domains of interest today are best described as a network of interrelated heterogeneous objects. As future
work, link mining may focus on the integration of link mining algorithms for a spectrum of knowledge discovery
tasks. Furthermore, in many applications, the facts to be analyzed are dynamic and it is important to develop
incremental link mining algorithms. Besides mining knowledge from links, objects and networks, we may wish to
construct an information network based on both ontological and unstructured information.

1.2.2 Discovery, understanding, and usage of patterns and knowledge

Scientific and engineering applications often handle massive data of high dimensionality. The goal of pattern
mining is to find itemsets, subsequences, or substructures that appear in a data set with frequency no less than
a user-specified threshold. Pattern analysis can be a valuable tool for finding correlations, clusters, classification
models, sequential and structural patterns, and outliers.

Frequent pattern mining has been a focused theme in data mining research for over a decade [HCXY07].
Abundant literature has been dedicated to this research, and tremendous progress has been made, ranging from
efficient and scalable algorithms for frequent itemset mining in transaction databases to numerous research frontiers,
such as sequential pattern mining, structural pattern mining, correlation mining, associative classification, and
frequent-pattern-based clustering, as well as their broad applications.

The most focused and extensively studied topic in frequent pattern mining is perhaps scalable mining methods.
There are also various proposals on reduction of such a huge set, including closed patterns, maximal patterns,
approximate patterns, condensed pattern bases, representative patterns, clustered patterns, and discriminative
frequent patterns. Recently, studies have proceeded to scalable methods for mining colossal patterns [ZYH+07]
where the size of the patterns could be rather large so that the step-by-step growth using an Apriori-like approach
does not work, and methods for pattern compression and extraction of high-quality top-k patterns [XCYH06].
Much research is still needed to substantially reduce the size of derived pattern sets, mine such patterns directly
and efficiently, and enhance the quality of retained patterns.
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Moreover, frequent pattern mining could help in other data mining tasks and many such pattern-based min-
ing methods have been developed. Frequent patterns have been used for effective classification by association
rule mining (such as [LHM98]), top-k rule generation for long patterns (such as [CTTX05]), and discriminative
frequent pattern-based classification [WK05]. Recent studies show that better classification models could be con-
structed using discriminative frequent patterns and such patterns could be mined efficiently and directly from data
[CYHH07, CYHY08]. Frequent patterns have also been used for clustering of high-dimensional biological data
[WWYY02]. Therefore, frequent patterns can play an essential role in these major data mining tasks and the
benefits should be exploited in depth.

We also need mechanisms for deep understanding and interpretation of patterns, e.g., semantic annotation for
frequent patterns, and contextual analysis of frequent patterns. The main research work on pattern analysis has
been focused on pattern composition (e.g., the set of items in item-set patterns) and frequency. A contextual
analysis of frequent patterns over the structural information can help respond questions like “why this pattern is
frequent?” [MXC+07]. The deep understanding of frequent patterns is essential to improve the interpretability
and the usability of frequent patterns.

Besides studies on transaction datasets, much research has been done on effective sequential and structural
pattern mining methods and the exploration of their applications [HCXY07, CH07]. Applications often raise new
research issues and bring deep insight on the strength and weakness of an existing solution. Much work is needed
to explore new applications of frequent pattern mining, for example, bioinformatics and software engineering.

The promotion of effective application of pattern analysis methods in scientific and engineering applications
is an important task in data mining. Moreover, it is important to further develop efficient methods for mining
long, approximate, compressed, and sophisticated patterns for advanced applications, such as mining biological
sequences and networks and mining patterns related to scientific and engineering processes. Furthermore, the
exploration of mined patterns for classification, clustering, correlation analysis, and pattern understanding will
still be interesting topics in research.

1.2.3 Stream data mining

Stream data refers to the data that flows into and out of the system like streams. Stream data is usually in vast
volume, changing dynamically, possibly infinite, and containing multi-dimensional features. Typical examples of
such data include audio and video recording of scientific and engineering processes, computer network information
flow, web click streams, and satellite data flow. Such data cannot be handled by traditional database systems,
and moreover, most systems may only be able to read a data stream once in sequential order. This poses great
challenges on effective mining of stream data [BBD+02, Agg06].

First, the techniques to summarize the whole or part of the data streams are studied, which is the basis for
stream data mining. Such techniques include sampling [DH01], load shedding [TcZ+03] and sketching techniques
[Mut03], synopsis data structures [GKMS01], stream cubing [CDH+02], and clustering [AHWY03]. Progress has
been made on efficient methods for mining frequent patterns in data streams [MM02], multidimensional analysis
of stream data (such as construction of stream cubes) [CDH+02], stream data classification [AHWY04], stream
clustering [AHWY03], stream outlier analysis, rare event detection [GFHY07], and so on. The general philosophy
is to develop single-scan algorithms to collect information about stream data in tilted time windows, exploring
micro-clustering, limited aggregation, and approximation.

The focus of stream pattern analysis is to approximate the frequency counts for infinite stream data. Algorithms
have been developed to count frequency using tilted windows [GHPY02] based on the fact that users are more
interested in the most recent transactions; approximate frequency counting based on previous historical data to
calculate the frequent patterns incrementally [MM02] and track the most frequent k items in the continuously
arriving data [CM03].

Initial studies on stream clustering concentrated on extending K-means and K-median algorithms to stream
environment [GMM+03]. The main idea behind the developed algorithms is that the cluster centers and weights
are updated after examining one transaction or a batch of transactions, whereas the constraints on memory and
time complexity are satisfied by limiting the number of centers. Later, [AHWY03] proposes to divide the clustering
process into online microclustering process, which stores summarized statistics about the data streams, and the
offline one, which performs macro-clustering on the summarized data according to a number of user preferences
such as the time frame and the number of clusters. Projected clustering can also be perform for high dimensional



1.2. MAJOR RESEARCH CHALLENGES 5

data streams [AHWY04].
The focus of stream classification of data streams is first on how to efficiently update the classification model

when data continuously flow in. VFDT [DH00] is a representative method in this field where a incremental
decision tree is built based on Hoeffding trees. Later, the concept drift problem in data stream classification
has been recognized, which refers to the unknown changes of the distribution underlying data streams. Many
algorithms have been developed to prevent deterioration in prediction accuracy of the model [HSD01, KM05],
by carefully selecting training examples that represent the true concept [Fan04] or combining multiple models to
reduce variance in prediction [WFYH03, GFH07]. For skewed distribution of stream data, it is recommended to
explore biased selective sampling and robust ensemble methods in model construction [GFHY07].

Stream data is often encountered in science and engineering applications. It is important to explore stream
data mining in such applications and develop application-specific methods, e.g., real-time anomaly detection in
computer network analysis, in electric power grid supervision, in weather modeling, in engineering and security
surveillance, and other stream data applications.

1.2.4 Mining moving object data, RFID data, and data from sensor networks

With the popularity of sensor networks, GPS, cellular phones, other mobile devices, and RFID technology, tremen-
dous amount of moving object data has been collected, calling for effective analysis. This is especially true in many
scientific, engineering, business and homeland security applications.

Sensor networks are finding increasing number of applications in many domains, including battle fields, smart
buildings, and even the human body. Most sensor networks consist of a collection of light-weight (possibly mobile)
sensors connected via wireless links to each other or to a more powerful gateway node that is in turn connected
with an external network through either wired or wireless connections. Sensor nodes usually communicate in a
peer-to-peer architecture over an asynchronous network. In many applications, sensors are deployed in hostile and
difficult to access locations with constraints on weight, power supply, and cost. Moreover, sensors must process a
continuous (possibly fast) stream of data. Data mining in wireless sensor networks (WSNs) is a challenging area, as
algorithms need to work in extremely demanding and constrained environment of sensor networks (such as limited
energy, storage, computational power, and bandwidth). WSNs also require highly decentralized algorithms.

Development of algorithms that take into consideration the characteristics of sensor networks, such as energy
and computation constraints, network dynamics, and faults, constitute an area of current research. Some work has
been done in developing localized, collaborative, distributed and self-configuration mechanisms in sensor networks.
In designing algorithms for sensor networks, it is imperative to keep in mind that power consumption has to be
minimized. Even gathering the distributed sensor data in a single site could be expensive in terms of battery power
consumed, some attempts have been made towards making the data collection task energy efficient and balance the
energy-quality trade-offs. Clustering the nodes of the sensor networks is an important optimization problem. Nodes
that are clustered together can easily communicate with each other, which can be applied to energy optimization
and developing optimal algorithms for clustering sensor nodes. Other works in this field include identification of
rare events or anomalies, finding frequent itemsets, and data preprocessing in sensor networks.

Recent years have witnessed and enormous increase in moving object data from RFID records in supply chain
operations, toll and road sensor readings from vehicles on road networks, or even cell phone usage from different
geographic regions. These movement data, including RFID data, object trajectories, anonymous aggregate data
such as the one generated by many road sensors, contain rich information. Effective management of such data is a
major challenge facing society today, with important implications into business optimization, city planning, privacy,
and national security. Interesting research has been conducted on warehousing RFID data sets [GHLK06], which
could handle moving object data sets by significantly compressing such data, and proposing a new aggregation
mechanism that preserves their path structures. Mining moving objects is a challenging problem due to the
massive size of the data, and its spatiotemporal characteristics. The methods developed along this line include
FlowGraph [GHL06b], which is a probabilistic model that captures the main trends and exceptions in moving
object data, and FlowCube [GHL06a], which is a multi-dimensional extension of the FlowGraph and an adaptive
fastest path algorithm [GHL+07] that computes routes based on driving patterns present in the data. RFID
systems are known to generate noisy data so data cleaning is an essential task for the correct interpretation
and analysis of moving object data, especially when it is collected from RFID applications and thus demans for
cost-effective cleaning methods (such as [GHS07]). One important application with moving objects is automated
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identification of suspicious movements. A framework for detecting anomalies [LHKG07] is proposed to express
object trajectories using discrete pattern fragments, extract features to form a hierarchical feature space and learn
effective classification rules at multiple levels of granularity. Another line of work on outlier detection in trajectories
focuses on detecting outlying sub-trajectories [LHL08] based on partition-and-detect framework, which partitions
a trajectory into a set of line segments, and then, detects outlying line segments for trajectory outliers. The
problem of clustering trajectory data [LHW07] is also studied where common sub-trajectories are discovered using
the minimum description length (MDL) principle.

Overall, this is still a young field with many research issues to be explored on mining moving object data, RFID
data, and data from sensor networks. For example, how to explore correlation and regularity to clean noisy sensor
network and RFID data, how to integrate and construct data warehouses for such data, how to perform scalable
mining for peta-byte RFID data, how to find strange moving objects, how to classify multidimensional trajectory
data, and so on. With time, location, moving direction, speed, as well as multidimensional semantics of moving
object data, likely multi-dimensional data mining will play an essential role in this study.

1.2.5 Spatial, temporal, spatiotemporal, and multimedia data mining

Scientific and engineering data is usually related to space, time, and in multimedia modes (e.g., containing color,
image, audio, and video). With the popularity of digital photos, audio DVDs, videos, YouTube, web-based
map services, weather services, satellite images, digital earth, and many other forms of multimedia, spatial, and
spatiotemporal data, mining spatial, temporal, spatiotemporal, and multimedia data will become increasingly
popular, with far-reaching implications [MH01, SC03]. For example, mining satellite images may help detect forest
fire, find unusual phenomena on earth, predict hurricane landing site, discover weather patterns, and outline global
warming trends.

Spatial data mining is the process of discovering interesting and previously unknown, but potentially useful
patterns from large spatial data sets [SZHV04]. Extracting interesting and useful patterns from spatial data sets is
more difficult than extracting the corresponding patterns from traditional numeric and categorical data due to the
complexity of spatial data types, spatial relationships, and spatial autocorrelation. Interesting research topics in
this field include prediction of events at particular geographic locations, detecting spatial outliers whose no-spatial
attributes are extreme relative to its neighbors, finding co-location patterns where instances containing the patterns
often located in close geographic proximity, and grouping a set of spatial objects into clusters. Future research is
needed to compare the difference and similarity between classical data mining and spatial data mining techniques,
model semantically rich spatial properties other than neighborhood relationships, design effective statistical meth-
ods to interpret the mined spatial patterns, investigate proper measures for location prediction to improve spatial
accuracy and facilitate visualization of spatial relationships by representing both spatial and non-spatial features.
The problems of incorporating domain knowledge into mining when data is scarce and integrating data collection
with mining are worth studying in spatial data mining, and both theoretical analyses toward general studies of
spatial phenomena and empirical model designs targeted for specific applications represent the trends for future
research.

Time series data [SZ04], which represent sequences of recorded values, appear naturally in almost all fields of
applications including physics, finance, medicine and music. People have tried to obtain insights into the mechanism
that generates and the time series and use the valuable information contained in time series to predict future values.
In the last decade there has been an explosion of interest in mining time series data. Literally hundreds of papers
have introduced new algorithms to preprocess, index, classify, cluster, and identify patterns or novelties from time
series. As future work, the research on time series should consider mining multiple time series of the same type
or of different types, incorporating domain knowledge into time series mining and facilitate real time time series
mining in some applications.

For applications involving multimedia data, we need tools for discovering relationships between objects or
segments within multimedia document components, such as classifying images based on their contents, extracting
patterns in sound, categorizing speech and music, and recognizing and tracking objects in video streams. In
general, the multimedia files from a database must be first preprocessed to improve their quality. Subsequently,
these multimedia files undergo various transformations and features extraction to generate important features
from the multimedia files. With the generated features, mining can be carried out using data mining techniques
to discover significant patterns. These resulting patterns are then evaluated and interpreted in order to obtain
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the final applications knowledge. Numerous methodologies have been developed and many applications have
been investigated, including organizing multimedia data indexing and retrieval, extracting representative features
from raw multimedia data before the mining process and integrateing features obtained from multiple modalities.
For example, the MPEG-7 standard provides a good representative set of features. Automatic annotation, also
referred to as concept mining, is one of the main tasks in multimedia mining. The methods developed for this
task include supervised learning, unsupervised learning and contexts-based approaches. In supervised learning,
based on the annotated concepts for each multimedia document, the unclassified files are automatically categorized.
In unsupervised learning, multimedia files are clustered and annotators assign key words to each cluster, which
could be used to extract rules for annotating future documents [SS03]. The third approach tries to mine concepts
by looking at the contextual information [SW05], such as the text associated with images, to derive semantic
concepts. Another important topic, detection of interesting or unusual events, has received considerable interest
in multimedia research. In the future, multimedia mining will be continuously receiving attention, especially for
its application in online video sharing, security surveillance monitoring and effective image retrieval.

Spatiotemporal data mining [RHS01] is an emerging research area that is dedicated to the development of
novel algorithms and computational techniques for the successful analysis of large spatiotemporal databases and
the disclosure of interesting knowledge in spatiotemporal data. Much work has been done to modify the data
mining techniques so that they can, to the largest extent, exploit the rich spatiotemporal relationships/patterns
embedded in the datasets. Spatiotemporal data mining tasks and techniques can be roughly classified into indexing
and searching, pattern analysis, clustering, compression, and outlier detection.

Both the temporal and spatial dimensions could add substantial complexity to data mining tasks. First, the
spatial and temporal relationships are information bearing and therefore need to be considered in data mining.
Some spatial and temporal relationships are implicitly defined, and must be extracted from the data. Such
extraction introduces some degree of fuzziness and/or uncertainty that may have an impact on the results of the data
mining process. Second, working at the level of stored data is often undesirable, and thus complex transformations
are required to describe the units of analysis at higher conceptual levels. Third, interesting patterns are more likely
to be discovered at the lowest resolution/granularity level, but large support is more likely to exist at higher levels.
Finally, how to express domain independent knowledge and how to integrate spatiotemporal reasoning mechanisms
in data mining systems are still open problems.

Research in this domain needs the confluence of multiple disciplines including image processing, pattern recog-
nition, geographic information systems, parallel processing, and statistical data analysis. Automatic categorization
of images and videos, classification of spatiotemporal data, finding frequent/sequential patterns and outliers, spa-
tial collocation analysis, and many other tasks have been studied popularly. With the mounting of such data, the
development of scalable analysis methods and new data mining functions will be an important research frontier
for years to come.

1.2.6 Mining text, Web, and other unstructured data

Web is the common place for scientists and engineers to publish their data, share their observations and experiences,
and exchange their ideas. There is a tremendous amount of scientific and engineering data on the web. For
example, in biology and bioinformatics research, there are GenBank, ProteinBank, GO, PubMed, and many other
biological or biomedical information repositories available on the Web. Therefore, the Web has become the ultimate
information access and processing platform, housing not only billions of link-accessed “pages”, containing textual
data, multimedia data, and linkages, on the surface Web, but also query-accessible “databases” on the deep Web.
With the advent of Web 2.0, there is an increasing amount of dynamic “workflow” emerging. With its penetrating
deeply into our daily life and evolving into unlimited dynamic applications, the Web is central in our information
infrastructure. Its virtually unlimited scope and scale render immense opportunities for data mining.

Text mining and information extraction [Ber03] have been applied not only to Web mining but also to the
analysis of other kinds of semi-structured and unstructured information, such as digital libraries, biological infor-
mation systems, research literature analysis systems, computer-aided design and instruction, and office automation
systems. Technologies in the text-mining process include information extraction, topic tracking, summarization,
categorization, clustering, and concept linkage. Information extraction [Cha01] represents a starting point for
computers analyzing unstructured text and identifying key phrases and relationships within text. It does it by
looking for predefined sequences in the text, a process called pattern matching. A topic-tracking system [All02]
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keeps user profiles and, based on the documents a user views, predicts other documents of interest to the user.
Text summarization [ER04] helps users figure out whether a lengthy document meets their needs and is worth
reading. With large-volume texts, text-summarization software processes and summarizes the document in almost
no time. The key to summarization is reducing the length and detail of a document while retaining its main
points and overall meaning. Categorization involves identifying the main themes of a document [WIZD04]. When
categorizing particular documents, a computer program often treats them as a “bag of words”. The program does
not attempt to process the actual information as information extraction does. Rather, categorization counts only
words that appear and, from the counts, identifies the main topics covered in the document. Clustering is a tech-
nique used to group similar documents [DM01], but it differs from categorization in that documents are clustered
on the fly instead of through predefined topics. Documents can also appear in multiple subtopics, ensuring that
useful documents are not omitted from the search results. Some topic-modeling techniques [MZ05] connect related
documents by identifying their shared concepts, helping users find information they perhaps wouldn’t have found
through traditional search methods. It promotes browsing for information rather than searching for it.

Web Mining [Liu06, Cha02, KB00] is the extraction of interesting and potentially useful patterns and implicit
information from artifacts or activity related to the World-Wide Web. There are roughly three knowledge discovery
domains that pertain to web mining: Web Content Mining, Web Structure Mining, and Web Usage Mining. Web
content mining is an automatic process that goes beyond keyword extraction [QD07] to discover useful information
from the content of a web page. The type of the web content may consist of text, image, audio or video data in the
web. The text content is the most widely researched area. The technologies that are normally used in web content
mining are natural language processing, information retrieval, and text mining. The strategies include directly
mining the content of documents and improving on the content search of other tools like search engines. Web
Structure Mining [FLGC02] can help reveal more information than just the information contained in documents.
For example, links pointing to a document indicate the popularity of the document, while links coming out of a
document indicate the richness or perhaps the variety of topics covered in the document. Counters of hyperlinks,
in and out documents, retrace the structure of the web artifacts summarized. Finally, Web Usage Mining [FL05]
can help understand the user behavior and the web structure by analyzing the web access logs of different web
sites. There are two main tendencies in Web Usage Mining driven by the applications of the discoveries: General
Access Pattern Tracking, which analyzes the web logs to understand access patterns and trends to construct better
structure and grouping of resource providers, and Customized Usage Tracking, which analyzes individual trends
to customize web sites to users.

There are lots of research issues in this domain [Cha02, Liu06], which takes collaborative efforts of multiple
disciplines, including information retrieval, databases, data mining, natural language processing, and machine
learning. For many scientific and engineering applications, the data is somewhat structured and semi-structured,
with designated fields for text and multimedia data. Thus it is possible to mine and build relatively structured web
repositories. Some promising research topics include heterogeneous information integration, information extraction,
personalized information agents, application-specific partial Web construction and mining, in-depth Web semantics
analysis, development of scientific and engineering domain-specific semantic Webs, and turning Web into relatively
structured information-base.

1.2.7 Data cube-oriented multidimensional online analytical mining

Scientific and engineering datasets are usually high-dimensional in nature. Viewing and mining data in multidi-
mensional space will substantially increase the power and flexibility of data analysis. Data cube computation and
OLAP (online analytical processing) technologies developed in data warehouse have substantially increased the
power of multidimensional analysis of large datasets.

Some researchers began to investigate how to conduct traditional data mining and statistical analysis in the
multi-dimensional manner efficiently. For example, regression cube [CDH+06] is designed to support efficient
computation of the statistical models. In this framework, each cell can be compressed into an auxiliary matrix
with a size independent of the number of tuples and then the statistical measures for any data cell can be computed
from the compressed data of the lower-level cells without accessing the raw data. In a prediction cube [CCLR05],
each cell contains a value that summarizes a predictive model trained on the data corresponding to that cell and
characterizes its decision behavior or predictiveness. The authors further show that such cubes can be efficiently
computed by exploiting the idea of model decomposition. In [LH07], the issues of anomaly detection in multi-
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dimensional time-series data are examined. A time-series data cube is proposed to capture the multi-dimensional
space formed by the attribute structure and facilitate the detection of anomalies based on expected values derived
from higher level, more general time-series. Moreover, an efficient search algorithm is proposed to iteratively select
subspaces in the original high-dimensional space and detect anomalies within each one. Recent study on sampling
cubes [LHY+08] discuss about the desirability of OLAP over sampling data, which may not represent the full
data in the population. The proposed sampling cube framework could efficiently calculate confidence intervals
for any multidimensional query and uses the OLAP structure to group similar segments to increase sampling size
when needed. Further, to handle high dimensional data, a Sampling Cube Shell method is proposed to effectively
reduce the storage requirement while still preserving query result quality. Such multi-dimensional, especially high-
dimensional, analysis tools will ensure data can be analyzed in hierarchical, multidimensional structures efficiently
and flexibly at user’s finger tips. This leads to the integration of online analytical processing with data mining,
i.e., OLAP mining. Some efforts have been devoted along this direction, but grand challenge still exits when one
needs to explore the large space of choices to find interesting patterns and trends [RC07].

We believe that OLAP mining will substantially enhance the power and flexibility of data analysis and lead to
the construction of easy-to-use tools for the analysis of massive data with hierarchical structures in multidimensional
space. It is a promising research field for developing effective tools and scalable methods for exploratory-based
scientific and engineering data mining.

1.2.8 Visual data mining

A picture is worth a thousand words. There have been numerous data visualization tools for visualizing various
kinds of data sets in massive amount and of multidimensional space [Tuf01]. Besides popular bar charts, pie charts,
curves, histograms, quantile plots, quantitle-quantile plots, boxplots, scatter plots, there are also many visualization
tools using geometric (e.g., dimension stacking, parallel coordinates), hierarchical (e.g., treemap), and icon-based
(e.g., Chernoff faces and stick figures) techniques. Moreover, there are methods for visualizing sequences, time-
series data, phylogenetic trees, graphs, networks, web, as well as various kinds of patterns and knowledge (e.g.,
decision-trees, association rules, clusters and outliers) [FGW01]. There are also visual data mining tools that may
facilitate interactive mining based on user’s judgement of intermediate data mining results [AEEK99]. Recently, we
have developed a DataScope system that maps relational data into 2-D maps so that multidimensional relational
data can be browsed in Google map’s way [WLX+07].

Most data analysts use visualization as part of a process sandwich strategy of interleaving mining and visual-
ization to reach a goal, an approach commonly identified in many research works on applications and techniques
for visual data mining [dOL03]. Usually, the analytical mining techniques themselves do not rely on visualization.
Most of the papers describing visual data mining approaches and applications found in the literature fall into two
categories: either they use visual data exploration systems or techniques to support a knowledge extraction goal
or a specific mining task, or they use visualization to display the results of a mining algorithm, such as a clus-
tering process or a classifier, and thus enhance user comprehension of the results. A classification of information
visualization and visual data mining techniques is proposed in [Kei02], which is based on the data type to be
visualized, the visualization technique, and the interaction and distortion technique. Mining tasks usually demand
techniques capable of handling large amounts of multidimensional data, often in the format of Data Tables or
relational databases. Parallel coordinates and scatter plots are much exploited in this context. Also, interaction
mechanisms for filtering, querying, and selecting data are typically required for handling larger data sets [Ins97].
Another typical use of visualization in mining resides in visually conveying the results of a mining task, such as
clustering or classification, to enhance user interpretation. One such example is given by the BLOB clustering
algorithm [GSF97], which uses implicit surfaces for visualizing data clusters. But rather than using visual data
exploration and analytical mining algorithms as separate tools, a stronger data mining strategy would be to tightly
couple the visualizations and analytical processes into one data mining tool. Many mining techniques involve dif-
ferent mathematical steps that require user intervention. Some of these can be quite complex and visualization can
support the decision processes involved in making such interventions. From this viewpoint, a visual data mining
technique is not just a visualization technique being applied to exploit data in some phases of an analytical mining
process, but a data mining algorithm in which visualization plays a major role.

We believe that visual data mining is appealing to scientists and engineers because they often have good
understanding of their data, can use their knowledge to interpret their data and patterns with the help of visual-
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ization tools, and interact with the system for deeper and more effective mining. Tools should be developed for
mapping data and knowledge into appealing and easy-to-understand visual forms, and for interactive browsing,
drilling, scrolling, and zooming data and patterns to facilitate user exploration. Finally, for visualization of large
amount of data, parallel processing and high-performance visualization tools should be investigated to ensure high
performance and fast response.

1.2.9 Domain-specific data mining: Data mining by integration of sophisticated
scientific and engineering domain knowledge

Besides general data mining methods and tools for science and engineering, each scientific or engineering discipline
has its own data sets and special mining requirements, some could be rather different from the general ones.
Therefore, in-depth investigation of each problem domain and development of dedicated analysis tools are essential
to the success of data mining in this domain. Here we examine two problem domains: biology and software
engineering.

Biological data mining
The fast progress of biomedical and bioinformatics research has led to the accumulation and publication (on

the web) of vast amount of biological and bioinformatics data. However, the analysis of such data poses much
greater challenges than traditional data analysis methods [BHLY04]. For example, genes and proteins are gigantic
in size (e.g., a DNA sequence could be in billions of base pairs), very sophisticated in function, and the patterns
of their interactions are largely unknown. Thus it is a fertile field to develop sophisticated data mining methods
for in-depth bioinformatics research. We believe substantial research is badly needed to produce powerful mining
tools in many biological and bioinformatics subfields, including comparative genomics, evolution and phylogeny,
biological data cleaning and integration, biological sequence analysis, biological network analysis, biological image
analysis, biological literature analysis (e.g., PubMed), and systems biology. From this point view, data mining is
still very young with respect to biology and bioinformatics applications. Substantial research should be conducted
to cover the vast spectrum of data analysis tasks.

Data mining for software engineering
Software program executions potentially (e.g., when program execution traces are turned on) generate huge

amounts of data. However, such data sets are rather different from the datasets generated from the nature or
collected from video cameras since they represent the executions of program logics coded by human programmers.
It is important to mine such data to monitor program execution status, improve system performance, isolate
software bugs, detect software plagiarism, analyze programming system faults, and recognize system malfunctions.

Data mining for software engineering can be partitioned into static analysis and dynamic/stream analysis,
based on whether the system can collect traces beforehand for post-analysis or it must react at real time to
handle online data. Different methods have been developed in this domain by integration and extension of the
methods developed in machine learning, data mining, pattern recognition, and statistics. For example, statistical
analysis such as hypothesis testing) approach [LFY+06] can be performed on program execution traces to isolate
the locations of bugs which distinguish program success runs from failing runs. Despite of its limited success, it
is still a rich domain for data miners to research and further develop sophisticated, scalable, and real-time data
mining methods.

1.3 Conclusions

Science and engineering are fertile lands for data mining. In the last two decades, science and engineering have
evolved to a stage that gigantic amounts of data are constantly being generates and collected, and data mining
and knowledge discovery becomes the essential scientific discovery process. We have proceeded to the era of data
science and data engineering.

In this paper, we have examined a few important research challenges in science and engineering data mining.
There are still several interesting research issues not covered in this short abstract. One such issue is the develop-
ment of invisible data mining functionality for science and engineering which builds data mining functions as an
invisible process in the system (e.g., rank the results based on the relevance and some sophisticated, preprocessed
evaluation functions) so that users may not even sense that data mining has been performed beforehand or is
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being performed and their browsing and mouse clicking are simply using the results of or further exploring of data
mining. Another research issue is privacy-preserving data mining that aims to performing effective data mining
without disclosure of private or sensitive information to outsiders. Finally, knowledge-guided intelligent human
computer interaction based on the knowledge extracted from data could be another interesting issue for future
research.
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