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ABSTRACT
Automatic construction of user-desired topical hierarchies
over large volumes of text data is a highly desirable but chal-
lenging task. This study proposes to give users freedom to
construct topical hierarchies via interactive operations such
as expanding a branch and merging several branches. Exist-
ing hierarchical topic modeling techniques are inadequate for
this purpose because (1) they cannot consistently preserve
the topics when the hierarchy structure is modified; and (2)
the slow inference prevents swift response to user requests.
In this study, we propose a novel method, called STROD,
that allows efficient and consistent modification of topic hi-
erarchies, based on a recursive generative model and a scal-
able tensor decomposition inference algorithm with theoreti-
cal performance guarantee. Empirical evaluation shows that
STROD reduces the runtime of construction by several or-
ders of magnitude, while generating consistent and quality
hierarchies.

Categories and Subject Descriptors
I.7 [Computing Methodologies]: Document and Text
Processing; H.2.8 [Database Applications]: Data Mining

Keywords
Topic Modeling, Ontology Learning, Interactive Data Ex-
ploration, Tensor Decomposition

1. INTRODUCTION
Constructing a topic hierarchy for large text collection,

such as business documents, news articles, social media mes-
sages, and research publications, is helpful for information
workers, data analysts and researchers to summarize and
navigate them in multiple granularity efficiently. While ex-
isting hierarchical topic models can be used to produce such
hierarchies as an exploration tool, they still require human
curation (e.g., modify the structure and label the topics) to
meet the quality requirement for reliable exploitation. The
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manual work for curation is very expensive. This work fo-
cuses on helping with the structure modification task.

The nature of this task is interactive and iterative. On one
hand, people use a topic model to explore a dataset when the
topics are unknown a priori. Thus it is hard to determine
the best shape of the hierarchy upfront. On the other hand,
as they see the results (inferred topics even with imperfect
structure), people have ideas about a more desirable struc-
ture, e.g., one topic should be expanded, or multiple topics
should be merged. Then they may want to modify part
of the hierarchy but preserve other parts that already look
good to be labeled. Some modification, such as expanding
a topic, is again exploratory and needs help from the ma-
chine. It takes multiple iterations of human investigation
and algorithm run to finish the construction.

To enable interactive construction of the topic hierarchy,
i.e., allowing users to modify the structure on the go, the sys-
tem needs to satisfy two conditions: efficiency and consis-
tency. Efficiency is necessary for users to see results quickly
and react before they lose the context. Consistency is neces-
sary for confusion-free modification, and has two-fold mean-
ings: when people want to modify certain parts of the hi-
erarchy, the remaining parts should be preserved after each
run (single-run consistency); and a system should output un-
differentiated results given identical input in multiple runs
(multi-run consistency).

Limitation of prior work. Most existing hierarchical
topic modeling techniques [10, 17, 20, 14, 2] are based on
the extensions of latent Dirichlet allocation (LDA), and are
not designed for interactive construction of the hierarchy.
First, the inference algorithms for these models are expen-
sive, demanding hundreds or thousands of passes of data.
Second, an inference algorithm generates one hierarchy for
one corpus in one run of the algorithm. Running the in-
ference algorithm with a slightly modified hierarchy struc-
ture does not guarantee preservation of topics in untouched
branches. Rerunning the inference algorithm with the same
input may result in very different results. Therefore, both
single-run and multi-run consistency conditions are violated
if we use them for interaction.

Our solution. We consider a strategy of top-down, pro-
gressive construction of a topical hierarchy, instead of in-
ferring a complex hierarchical model all at once. Thus the
construction can be done via a series of interactive opera-
tions, such as expanding a topic, collapsing a topic, merging
topics and removing topics. Efficient and consistent algo-
rithms can then be designed for each operation. Users can
see the results after each operation, and decide what opera-



tion to take next. This strategy has several benefits: users
can easily control the complexity of the hierarchy; users can
see intermediate results and curate the hierarchy in early
stages; and it is easier for curators to focus on one simple
operation a time.

To support these interactive operations in an efficient and
consistent manner, we resort to moment-based inference.
Simply put, moment-based inference compresses the original
data by collecting important statistics from the documents,
e.g., term co-occurrences, and uses these statistics to infer
topics. For one advantage, the inference based on the com-
pressed information avoids the expensive, numerous passes
of the data. For another advantage, the compression reduces
randomness in the data by aggregation. With careful choice
of the statistics and the inference method, we can uncover
the topics with theoretical guarantee. Modifications to the
hierarchy can be supported by manipulating the moments.

We establish a top-down hierarchy construction frame-
work STROD based on these ideas. To the best of our
knowledge, it is the first framework towards interactive top-
ical hierarchy construction. The following summarizes our
main contributions:

• We propose a new hierarchical topic model such that the
modification operations mentioned above can be achieved
by several atomic operators to the model.

• We develop a scalable tensor-based recursive orthogonal
decomposition (STROD) method for efficient and consis-
tent construction.

• Our experiments demonstrate that our method is several
orders of magnitude more efficient than the alternatives,
while generating consistent, quality topic hierarchy that
is comprehensible to users.

2. RELATED WORK
Statistical topic modeling techniques model a document

as a mixture of multiple topics, while every topic is mod-
eled as a distribution over terms. Two important models
are probabilistic latent semantic analysis (PLSA) [13] and
its Bayesian extension latent Dirichlet allocation (LDA) [5].
They model the generative processes of each term from each
document in a corpus, and then infer the unknown distribu-
tions that best explain the observed documents.

Hierarchical topic models follow the same generative spirit.
Instead of having a pool of flat topics, these models assume
an internal hierarchical structure of the topics. Different
models use different generative processes to simulate this
hierarchical structure, such as nested Chinese Restaurant
Process [10], Pachinko Allocation [17], hierarchical Pachinko
Allocation [20], recursive Chinese Restaurant Process [14],
and nested Chinese Restaurant Franchise [2]. When these
models are applied to constructing a topical hierarchy, the
entire hierarchy is inferred all at once from the corpus.

The main inference methods for these topic models can
be divided into two categories: MCMC sampling [11] and
variational inference [5]. They are essentially approxima-
tion of the Maximum Likelihood (ML) principle (including
its Bayesian version maximum a posterior): Find the best
parameters that maximize the joint probability specified by
a model. There has been a substantial amount of work on
speeding up LDA inference, e.g., by leveraging sparsity [22,
30, 16] and parallelization [21, 24, 31], or online learning

mechanism [1, 12, 8]. Few of these ideas have been adopted
by the hierarchical topic model studies.

These inference methods have no theoretical guarantee of
convergence within a bounded number of iterations, and are
nondeterministic either due to the sampling or the random
initialization. Recently, a new inference method for LDA
has been proposed based on a method of moments, rather
than ML. It is found to have provable error bound and con-
vergence properties in theory [3].

All of the hierarchical topic models follow the bag-of-
words assumption, while some other extensions of LDA have
been developed to model sequential n-grams to achieve bet-
ter interpretability [26, 29, 18]. No one has integrated them
in a hierarchical topic model. The efficiency and consistency
issues will become more challenging in an integrated model.
A practical approach is to decouple the topic modeling part
and the phrase mining part. Blei and Lafferty [4] have pro-
posed to use a statistical test to find topical phrases, which is
time-consuming. A much less expensive heuristic is studied
in recent work [6] and shown to be effective.

There are a few alternative approaches to constructing a
topical hierarchy. Pujara and Skomoroch [23] proposed to
first run LDA on the entire corpus, and then split the corpus
heuristically according to the results and run LDA on each
split corpus individually. CATHY [28] is a recursive topical
phrase mining framework for short, content-representative
text. It also decouples phrase mining and topic discovery
for efficiency purpose. Though it is not designed for generic
text, it bears some similarity with this work such as top-
down recursion and compression of documents.

After the hierarchy is constructed from a corpus, people
can label these topics and derive topic distributions for each
document [25]. Those are not the subject of this paper.
Broadly speaking, this work is also related to: hierarchical
clustering of documents [9], queries [19], keywords [28] etc.;
and ontology learning [15], which mines subsumption (‘is-a’)
relationships from text.

3. PROBLEM FORMULATION
Given a corpus, our goal is to construct a user-desired

topical hierarchy, i.e., a tree of topics, where each child topic
is about a more specific theme within the parent topic.

For easy interaction, the topics need to be visualized in
user-friendly forms. Unigrams are often ambiguous, espe-
cially across fine-grained topics [27]. We choose to enhance
the topic representation with ranked phrases. The rank-
ing should reflect both their popularity and discriminating
power for a topic. For example, the top ranked phrases for
the database topic can be: “database systems”, “query pro-
cessing”, “concurrency control” . . . . A phrase can appear in
multiple topics, though it will have various ranks in them.

Formally, the input data are a corpus of D documents.
The d-th document can be segmented into a sequence of
ld tokens. All the unique tokens in this corpus are indexed
using a vocabulary of V terms. And wd,j ∈ [V ], j = 1, . . . , ld
represents the index of the j-th token in document d. A topic
t is defined by a probability distribution over terms φt ∈
∆V−1, and an ordered list of phrases Pt = {Pt,1, Pt,2, . . . },
where Pt,i is the phrase ranked at i-th position for topic t.

A topical hierarchy is defined as a tree T in which each
node is a topic. Every non-leaf topic t has Ct child topics.
We assume Ct is bounded by a small number K, such as
10, because the topical hierarchy is intended for human to
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Figure 1: Examples of 6 user operations. A topic can be indexed by a integer (in the circle), or by the path from root

efficiently browse the subtopics for each topic. The number
K is named the width of the tree T .

A topical hierarchy for a corpus is constructed via a series
of user operations. An operation transforms one topic hier-
archy T to another T ′. A top-down construction framework
supports the following user operations.

1. Expand – for an arbitrary topic t in T , grow a subtree
rooted at t.

2. Collapse – for an arbitrary topic t in T , remove all its
descendant topics.

3. Split – for an arbitrary topic t in T , split it into k topics.

4. Remove – for an arbitrary set of topics t1, . . . , tn in T ,
delete these topics.

5. Merge – for an arbitrary set of topics t1, . . . , tn in T ,
merge these topics as a new topic, whose parent is the
least common ancestor of them, and whose children are
the union of the children of all merged topics.

6. Move – for an arbitrary topic t in T , move the subtree
rooted at t to be under a different parent topic t′.

Figure 1 demonstrates these operations. In these operations,
only a few topics are affected, so users can consistently mod-
ify the hierarchy and control the change.

For convenience, we index a topic using the top-down path
from root to this topic. The root topic is indexed as o. Every
non-root topic t is recursively indexed by πt → χt, where πt
is the path index of its parent topic, and χt ∈ [Ct] is the
index of t among its siblings. For example, topic 2 in the
‘merge’ example of Figure 1 is indexed as o → 2, and topic
3 in the same tree is indexed as o → 1 → 1. The level ht
of a topic t is defined to be its distance to the root. So root
topic is in level 0, and topic o → 1 → 1 is in level 2. The
height H of a tree is defined to be the maximal level over all
the topics in the tree. Clearly, the total number T of topics

is upper bounded by KH+1−1
K−1

.

4. THE STROD FRAMEWORK
We develop a Scalable Tensor Recursive Orthogonal De-

composition (STROD) framework for interactive topical hi-
erarchy construction. In Section 4.1, we propose a new hier-
archical topic model, and introduce how the user operations
can be achieved by atomic manipulations to the model. In
Section 4.2, we present our tensor-based algorithms support-
ing these operations. Section 4.3 introduces topical phrase
mining and ranking based on the inferred model parameters.

4.1 Hierarchical Topic Modeling
Generative hierarchical topic modeling assumes the docu-

ments are generated from a latent variable model, and then
infers the model parameters from observed documents to re-
cover the topics. Distinct from prior work, we do not infer a
hierarchy for one corpus only once. Instead, we allow users
to perform consistent modification to the hierarchy. There-
fore, we need a model that is convenient for manipulation
and supports all the user operations introduced in Section 3.

We first introduce our generative model when the hierar-
chy structure is fixed, and then discuss atomic operators to
manipulate the model structure.

4.1.1 Latent Dirichlet Allocation with Topic Tree
In this subsection we assume the topic hierarchy structure

is fixed. Its height is H, and there are τ leaf nodes and T−τ
non-leaf nodes. For ease of explanation we assume all leaf
nodes are on the level of H.

Every leaf topic node t(Ct = 0) has a multinomial dis-
tribution φt = p(w = ·|t) over terms. Every document d
paired with a non-leaf node t(Ct > 0) has a multinomial
distribution θd,t = p(w = ·|d, t) over t’s child topics: t → 1
through t → Ct. θd,t represents the content bias of docu-
ment d towards t’s subtopics. For the ‘merge’ example in
Figure 1, before merge, there are 3 non-leaf topics: o, o→ 1
and o → 2. So a document d is associated with 3 multino-
mial distributions over topics: θd,o over its 2 children, θd,o→1

over its 3 children, and θd,o→2 over its 2 children. Each
multinomial distribution θd,t is generated from a Dirichlet
prior (αt→1, . . . , αt→Ct). αt→z represents the corpus’ bias

towards z-th child of topic t, and αt =
∑Ct
z=1 αt→z.

To generate a token wd,j , we first sample a path from
the root to a leaf node o → z1d,j → z2d,j → · · · → zHd,j .
The nodes along the path are sampled one by one, start-
ing from the root. Each time one child zid,j is selected from

all children of o→ z1d,j → · · · → zi−1
d,j , from the multinomial

θ
d,o→z1

d,j
→···→zi−1

d,j
. When a leaf node is reached, the token is

generated from its multinomial distribution φo→z1
d,j
→z2

d,j
→···→zH

d,j
.

The whole generative process is:

1. For each leaf node t in T , generate its distribution over
terms φt ∼ Dir(β);

2. For each document d ∈ [D]:

(a) For each non-leaf node t in T , draw a multinomial dis-
tribution over its subtopics: θd,t ∼ Dir(αt→1, . . . , αt→Ct);



Table 1: Notations used in our model

Symbol Description
D the number of documents in the corpus
V the number of unique terms in the corpus
H the height of the topical hierarchy
T the total number of topics in the hierarchy
τ the number of leaf topics in the hierarchy
Ct the number of child topics of topic t
ld the length (number of tokens) of document d
πt the parent topic of topic t

χt ∈ [Cπt ] the index of topic t among its siblings
wd,j ∈ [V ] the j-th token in the document d

zid,j the child index of the topic at level i for wd,j
φt topic t’s multinomial distribution over terms
αt the Dirichlet hyperparameter of topic t
θd,t document d’s distribution over t’s child topics

θd,t z1d,j z2d,j · · · zHd,j wd,j

α β φt

T − τ ld
D

τ

Figure 2: Latent Dirichlet Allocation with Topic Tree

(b) For each token index j ∈ [ld] of document d:

i. i← 0;

ii. While o→ z1d,j → · · · → zid,j is not a leaf node:

A. i← i+ 1;

B. Draw subtopic zid,j ∼Multi(θ
d,o→z1

d,j
→···→zi−1

d,j
);

iii. Generate token wd,j ∼Multi(φo→z1
d,j
→···→zi

d,j
).

Its graphical representation is Figure 2. Table 1 collects
the notations.

For every non-leaf topic node, we can derive a term distri-
bution by marginalizing their children’s term distributions:

φt = p(w = ·|t) =

Ct∑
z=1

p(t→ z|t)p(w = ·|t→ z) =

Ct∑
z=1

αt→z

αt
φt→z

(1)

So in our model, the term distribution φt for an internal
node in the topic hierarchy can be calculated as a mixture
of its children’s term distributions. The Dirichlet prior α
determines the mixing weight.

When the structure T is fixed, we need to infer its param-
eters φ(T ) and α(T ) from a given corpus. When the height
of the hierarchy H = 1, our model reduces to the flat LDA
model.

4.1.2 Model Structure Manipulation
The main advantage of this model is that it can be con-

sistently manipulated to accommodate user operations.

Proposition 1. The following atomic manipulation op-
erators are sufficient in order to compose all the user oper-
ations introduced in Section 3:

• EXP(t, k). Discover k subtopics of a leaf topic t.

• MER(t1, t2). Merge two topics t1 and t2 into a new topic
t3 under their least common ancestor t.

• MOV(t1, t2). Move the subtree rooted at topic t1 to be
under t2.

The following are examples about how to use these manipu-
lation operators to compose the user operations in Figure 1.

• ‘Collapse’ – applying MER(o, o→ 1) three times.

• ‘Split’ – EXP(o→ 2, 2) followed by MER(o, o→ 2).

• ‘Remove’ – MER(o→ 2, o→ 2→ 1) followed by MER(o, o→
2).

Implementation of these atomic operators needs to follow
the consistency requirement.

1. Single-run consistency – suppose the topical hierarchy T1
is altered into T2 after a user operation, certain nodes
are not affected. For example, in the ‘merge’ operation
in Figure 1, node 0,1,2,3,5,7 are not touched. The con-
sistency condition requires that, if we restart step 2-(b)
whenever we reach an affected node in step 2-(b)-ii, T1
and T2 are equivalent generative models, i.e., generate
the same documents in expectation. By this definition,
we have the following proposition.

Proposition 2. A single run altering T1 into T2 is
consistent if and only if i) for each unaffected leaf node
t, αt(T1) = αt(T2), φt(T1) = φt(T2); and ii) for each in-

ternal node t′, αt′(T2) =
∑Ct′
z=1 αt′→z(T2).

2. Multi-run consistency – with identical input across mul-
tiple runs, one operator should output nearly identical
(undifferentiated to human) α and φ.

Section 4.2 presents a moment-based method to compute
these operators efficiently and consistently.

4.2 Moment-based Operation
In statistics, the ξ-th order population moment of a ran-

dom variable is the expectation of its ξ-th power. In our
problem, the random variable is a token wd,j in a docu-
ment d. The ξ-th population moment is the expected co-
occurrence of terms in ξ token positions. They are related
to the model parameters α and φ. The method of moments
collects empirical moments from the corpus, and estimate α
and φ by fitting the empirical moments with theoretical mo-
ments. As a computational advantage, it only relies on the
term co-occurrence statistics. The statistics contain impor-
tant information compressed from the full data, and require
only a few scans of the data to collect.

To compute our three atomic operators, we generalize the
notion of population moments. We consider the population
moments conditioned on a topic t. The first order condi-
tional moment E1(t) is a vector in RV . Component x is the
expectation of 1w=x given that w is drawn from topic t’s
descendant.

E1(t) = p(w = ·|t, α) = φt =

Ct∑
z=1

αt→z
αt

φt→z (2)

The second order moment E2(t) ∈ RV×V is a V × V ten-
sor (hence, a matrix), storing the expectation of the co-
occurrences of two terms w1 and w2 given that they are



both drawn from topic t’s descendants.

E2(t) = p(w1 = ·, w2 = ·|t, t, α) (3)

=
∑
z1 6=z2

αt→z1αt→z2
αt(αt + 1)

φt→z1 ⊗ φt→z2 +

Ct∑
z=1

αt→z(αt→z + 1)

αt(αt + 1)
φ⊗2
t→z

The operator ⊗ denotes an outer product between tensors: if
A ∈ Rs1×···×sp , and B ∈ Rsp+1×···×sp+q , then A⊗B is a ten-
sor in Rs1×···×sp+q , and [A⊗B]i1...ip+q = Ai1...ipBip+1...ip+q .

Likewise, we can derive the third order moment E3(t) ∈
RV×V×V (a V × V × V tensor) as the expectation of co-
occurrences of three terms w1, w2 and w3 given that they
are all drawn from topic t’s descendants:

E3(t) = p(w1 = ·, w2 = ·, w3 = ·|t, t, t, α)

=
∑

z1 6=z2 6=z3 6=z1

αt→z1αt→z2αt→z3
αt(αt + 1)(αt + 2)

φt→z1 ⊗ φt→z2 ⊗ φt→z3

+
∑
z1 6=z2

αt→z1αt→z2 (αt→z1 + 1)

αt(αt + 1)(αt + 2)
(φt→z1 ⊗ φt→z1 ⊗ φt→z2

+φt→z1 ⊗ φt→z2 ⊗ φt→z1 + φt→z2 ⊗ φt→z1 ⊗ φt→z1 )

+

Ct∑
z=1

αt→z(αt→z + 1)(αt→z + 2)

αt(αt + 1)(αt + 2)
φ⊗3
t→z

(4)

Equations (2)–(4) characterize the theoretical conditional
moments for topic t using model parameters associated with
t’s children. The empirical conditional moments can be es-
timated from data and parameters of t’s ancestors.

For topic t, we estimate the empirical ‘topical’ count of
term x in document d as:

cd,x(t) = cd,xp(t|x) = cd,x(πt)
αtφt,x∑Cπt

z=1 απt→zφπt→z,x
(5)

Recall that πt is t’s parent. cd,x(t) can be recursively com-
puted through cd,x(πt) and the boundary is cd,x(o) = cd,x,
i.e., the total counts of term x in document d.

Then we can estimate empirical conditional moments us-
ing these empirical topical counts:

E1(t) =

D∑
d=1

1

ld(t)
cd(t)

E2(t) =

D∑
d=1

1

ld(t)(ld(t)− 1)
[cd(t)⊗ cd(t)− diag(cd(t))]

(6)

where ld(t) =
∑V
x=1 ci,x(t). These enable fast estimation of

empirical moments by passing data once.
The following three subsections discuss the computation

of the three atomic operators EXP,MER and MOV with the
method of moments.

4.2.1 EXP Operator
EXP(t, k) should find k subtopics under topic t, without

changing any existing model parameters. So we need an al-
gorithm that returns (αt→z, φt→z), z ∈ [k], with

∑k
z=1 αt→z =

αt. By recursion, we note that only αo needs to be set by a
user. It controls the degree of topical purity of documents.
When αo →∞, each document is only about one leaf topic.

We employ the method of moments. In Equations (2)–
(4), we replace the left hand side with the empirical condi-
tional moments estimated from the data. The right hand

side is theoretical moments with αt→z, φt→z, z ∈ [k] as un-
known variables. Solving these equations yields a solution
of the acquired model parameters. The following theorem
by Anandkumar et al. [3] suggests that we only need to use
up to 3rd order moments to find the solution.

Theorem 1. Assume M2 and M3 are defined as:

M2 =

k∑
z=1

λzv
⊗2
z ,M3 =

k∑
z=1

λzv
⊗3
z (7)

where λz > 0, vz’s are linearly independent, and ‖vz‖ = 1.
When M2 and M3 are given, vz and λz in Equation (7) can
be uniquely solved in polynomial time.

To write Equations (2)–(4) in this form, we define:

M2(t) = (αt + 1)E2(t)− αtE1(t)⊗2 (8)

U1(t) = E2(t)⊗ E1(t),

U2(t) = Ω(U1(t), 1, 3, 2), U3(t) = Ω(U1(t), 2, 3, 1)
(9)

M3(t) =
(αt + 1)(αt + 2)

2
E3(t) + α2

tE
⊗3
1

− αt(αt + 1)

2
[U1(t) + U2(t) + U3(t)]

(10)

where Ω(A, a, b, c) permutes the modes of tensor A, such
that Ω(A, a, b, c)i1,i2,i3 = Aia,ib,ic . It follows that:

M2(t) =

Ct∑
z=1

αt→z
αt

φ⊗2
t→z,M3(t) =

Ct∑
z=1

αt→z
αt

φ⊗3
t→z

So they fit Equation (7) nicely, and intuitively. If we decom-
pose M2(t) and M3(t), the z-th component is determined by
the child’s term distribution φt→z, and its weight is αt→z

αt
,

which is equal to p(t→ z|t).
M2(t) is a dense V × V matrix, and M3(t) is a dense V ×

V ×V tensor. Direct application of the tensor decomposition
algorithm in [3] is challenging due to the creation of these
huge dense tensors. Therefore, we design a more scalable
algorithm. The idea is to bypass the creation of M2(t) and
M3(t) and utilize the sparsity and decoupled decomposition
of the moments. We go over Algorithm 1 to explain it.

Line 1.1 collects the empirical moments with one scan of
the data.

Lines 1.2 to 1.6 project the large tensor M3 ∈ RV×V×V

into a smaller tensor T̃ ∈ Rk×k×k. T̃ is not only of smaller
size, but also can be decomposed into an orthogonal form:

T̃ =
∑k
z=1 λ̃z ṽz

⊗3. ṽz, z ∈ [k] are orthonormal vectors in

Rk. This is assured by the whitening matrix W calculated
in Line 1.5, which satisfies WTM2W = I. This part contains
two major tricks:

1. When calculating W , the straightforward computation
requires spectral decomposition of M2. We avoid explicit
creation of M2, but achieve the equivalent spectral de-
composition. We first perform spectral decomposition for
E2(t) = UΣ1U

T , where U ∈ RV×k is the matrix of k
eigenvectors, and Σ1 ∈ Rk×k is the diagonal eigenvalue
matrix. The k column vectors of U form an orthonor-
mal basis of the column space of E2(t). E1(t)’s repre-
sentation in this basis is M1 = UTE1(t). According to
Equation (8), M2 can now be written as:

M2 = U [(αt + 1)Σ1 − αtM1 ⊗M1]UT



So a second spectral decomposition can be performed
on M ′2 = (αt + 1)Σ1 − αtM1 ⊗M1, as M ′2 = U ′ΣU ′T .
Then we have UU ′Σ(UU ′)T as M2’s spectral decompo-
sition. The space requirement is reduced from V 2 to
m = ‖E2(t)‖0 � V 2, because only term pairs ever co-
occurring in one document contribute to non-zero ele-
ments of E2(t). The time for spectral decomposition is
reduced from O(V 2K) to O(mK).

2. The straightforward computation of the tensor product

T̃ = M3(t)(W,W,W ) using explicit M3(t) and W requires

O(V 3) space and O(V 3K+Ll̂2) time, where l̂ is the max-
imal document length. We decouple M3(t) as a summa-
tion of multiple tensors, such that the product between
each tensor and W is in a decomposable form: either
(v⊗ v⊗ v)(W,W,W ) or (v⊗B)(W,W,W ), which can be
computed as easily as (WT v)⊗3 or (WT v)⊗ (WTBW ).

T̃ =
(αt + 1)(αt + 2)

2
E3(t)(W,W,W ) + α2

t (W
TE1(t))⊗3

−αt(αt + 1)

2
[(U1 + U2 + U3)(W,W,W )] (11)

E3(t) =
1

D
[A1 −A2 − Ω(A2, 2, 1, 3)− Ω(A2, 2, 3, 1) + 2A3]

A1(W,W,W ) =

D∑
d=1

sd(t)(W
T cd(t))

⊗3

A2(W,W,W ) =

D∑
d=1

sd(t)(W
T cd(t))⊗WT diag(cd(t))W

A3(W,W,W ) =

V∑
x=1

D∑
d=1

sd(t)cd,x(t)(WT
x )⊗3

U1(W,W,W ) =
1

(αt + 1)
[I + αt(W

TE1(t))⊗2]⊗WTE1(t)

where sd(t) = 1
ld(t)[ld(t)−1][ld(t)−2]

and WT
x is the x-th

column of WT . U2(W,W,W ) and U3(W,W,W ) can be
obtained by permuting U1(W,W,W )’s modes. The reno-
vated procedure needs only one pass of data in O(LK2)
time.

Lines 1.7 to 1.14 perform orthogonal decomposition of T̃
via a power iteration method. The orthonormal eigenpairs

(λ̃z, ṽz) are found one by one. To find one such pair, the algo-
rithm randomly starts with a unit-norm vector v, runs power
iteration (Line 1.11) for n times, and records the candidate
eigenpair. This process further repeats by N times, starting
from various unit-norm vectors. Line 1.12 picks the eigen-
pair with the largest eigenvalue. After an eigenpair is found,

the tensor T̃ is deflated by the found component (Line 1.14),
and the same power iteration is applied to it to find the next

eigenpair. After all the k orthonormal eigenpairs (λ̃z, ṽz) are
found, they can be used to uniquely determine the k target
components (αt→z, φt→z) (Line 1.13).

Line 1.15 computes the empirical topical counts for the k
inferred child topics. It requires one scan of the data.

The decomposition by Algorithm 1 is fast and unique with
sufficient data.

Theorem 2. Assume M2 and M3 are defined as in Equa-
tion (7), λz > 0, and vz’s are linearly independent with
unit-norm, then Algorithm 1 finds exactly the same set of

Algorithm 1: EXP(t, k)

1.1 Compute E1(t) and E2(t) according to Equation (6);
1.2 Find k largest orthonormal eigenpairs (σz , µz), z ∈ [k] of E2;
1.3 M1 = UE1(t) ; // U = [µ1, . . . , µk],Σ1 = diag(σ1, . . . , σk)
1.4 Compute spectral decomposition for

M ′2 = (αt + 1)Σ1 − αtM1 ⊗M1 = U ′ΣU ′T ;

1.5 X = UU ′,W = M ′1Σ−
1
2 , (WT )+ = XΣ

1
2 ;

1.6 Compute T̃ = M3(t)(W,W,W ) according to Equation (11);
1.7 for z ∈ [k] do
1.8 λ∗ ← 0 ; // the largest eigenvalue so far
1.9 for outIter ∈ [N ] do

// N,n are a small constants
1.10 v ← a random unit-norm vector;

1.11 for innerIter ∈ [n] do v ← T̃ (I,v,v)

||T̃ (I,v,v)||
;

1.12 if T̃ (v, v, v) > λ∗ then (λ∗, v∗)← (T̃ (v, v, v),v);

1.13 αt→z = αt
1

(λ∗)2
, φt→z = αt→z

αt
(WT )+v∗;

1.14 T̃ ← T̃ − λ∗v∗ ⊗ v∗ ⊗ v∗ ; // deflation

1.15 Compute cd(t→ z), z ∈ [k] according to Equation (5);

(λz = αt→z
αt

, vz = φt→z) with high probability. The power
iteration step of Line 1.11 converges in a quadratic rate.

It satisfies single-run consistency. Multi-run consistency is
guaranteed if the empirical moments are close to theoretical
moments. We empirically evaluate it in Section 5.

The overall time complexity for EXP is O(LK2 + Km +
NnK4), which can be regarded linear to the data size since
N and n can be as small constants as 10 to 30, and K is a
small number like 10 to 50 due to our assumption of human-
manageable tree width. It requires only three scans of data.

4.2.2 MER Operator

Algorithm 2: MER(t1, t2)

2.1 Find the least common ancestor t of t1 and t2;
2.2 t′ ← t1;
2.3 while t′ 6= t and πt′ 6= t do
2.4 t′ ← πt′ ;
2.5 c(t′)← c(t′)− c(t1);
2.6 αt′ ← αt′ − αt1
2.7 t′ ← t2;
2.8 for t′ 6= t and πt′ 6= t do
2.9 t′ ← πt′ ;

2.10 c(t′)← c(t′)− c(t2);
2.11 αt′ ← αt′ − αt2
2.12 if t = t1 or t = t2 then t3 ← t ;
2.13 else
2.14 Create topic node t3 with parent t;
2.15 c(t3)← c(t1) + c(t2);
2.16 αt3 ← αt1 + αt2 ;

2.17 for z ∈ [Ct1 ] do π(t1 → z)← t3;
2.18 for z ∈ [Ct2 ] do π(t2 → z)← t3;
2.19 Remove t1 and t2 from T , and add t3 to T ;

To merge two topics t1 and t2, we need to find their least
common ancestor t (Line 2.1), subtract the topical counts
c(t′) and the Dirichlet prior αt′ for any other topic t′ in the
path between t1 and t2 (Lines 2.2–2.11), and then create a
new node t3 to sum up the topical counts and Dirichlet prior
of t1 and t2 (Lines 2.14–2.16) with one exception: when t1
is t2’s direct ancestor or direct descendant, we can just use



t as the merged topic node (Line 2.12). We then move the
children of t1 and t2 to be under the merged topic node
(Lines 2.17–2.18). Last, we remove t1 and t2 and add t3 to
the topical hierarchy (Line 2.19). The complexity for MER
is O(LH).

4.2.3 MOV Operator

Algorithm 3: MOV(t1, t2)

3.1 t← πt1 ;
3.2 while t 6= o do
3.3 c(t)← c(t)− c(t1);
3.4 αt ← αt − αt1 ;
3.5 t← πt;

3.6 t← t2;
3.7 while t 6= o do
3.8 c(t)← c(t) + c(t1);
3.9 αt ← αt + αt1 ;

3.10 t← πt;

3.11 Set πt1 ← t2;

To move the subtree rooted at t1 to be under t2, we first
subtract topical counts and Dirichlet prior from every an-
cestor of t1 (Lines 3.1–3.5), and then add them to every
ancestor of t2, including t2 itself (Lines 3.6–3.10). Finally,
we set the parent of t1 to be t2. The complexity for MOV is
O(LH).

The implementation of MER and MOV using Algorithms 2
and 3 satisfy both multi-run and single-run consistency re-
quirement.

4.3 Phrase Mining and Ranking
After the term distribution in each topic is inferred, we can

then mine and rank topical phrases within each topic. The
phrase mining and ranking in STROD adapt CATHY [27]
to generic text. Here we briefly present the process.

In this work, a phrase is defined as a frequent consecu-
tive sequence of terms of arbitrary lengths. To filter out in-
complete phrases (e.g., ‘vector machine’ instead of ‘support
vector machine’) and frequently co-occurred terms that do
not make up a meaningful phrase (e.g., ‘often use’), we use
a statistical test to select quality phrases [7], and record the
count cd,P of each phrase P in each document d.

After the phrases of mixed lengths are mined, they are
ranked with regard to the representativeness of each topic
in the hierarchy, based on two factors: popularity and dis-
criminativeness. A phrase is popular for a topic if it appears
frequently in documents containing that topic (e.g., ‘infor-
mation retrieval’ has better popularity than ‘cross-language
information retrieval’ in the Information Retrieval topic). A
phrase is discriminative of a topic if it is frequent only in
the documents about that topic but not in those about other
topics (e.g., ‘query processing’ is more discriminative than
‘query’ in the database topic).

We use the topical term distributions inferred from our
model to estimate the ‘topical count’ cd,P (t) of each phrase
P in each document d, in a similar way as we estimate the
topical count of terms in Equation (5):

cd,P (t) = cd,P (πt)p(t|P, πt) = cd,P (πt)
αt

∏
x∈P φt,x∑Cπt

z=1 απt→z
∏
x∈P φπt→z,x

Let the conditional probability p(P |t) be the probability
of “randomly choose a document and a phrase that is about
topic t, the phrase is P .” It can be estimated as p(P |t) =
1
D

∑D
d=1

cd,P (t)∑
P ′ cd,P ′ (t)

. The popularity of a phrase P in a

topic t can be quantified by p(P |t). The discriminativeness
can be measured by the log ratio between the probability
p(P |t) conditioned on topic t and the probability p(P |πt)
conditioned on its parent topic πt: log p(P |t)

p(P |πt) .

A good ranking function to combine these two factors is
their product:

rt(P ) = p(P |t) log
p(P |t)
p(P |πt)

(12)

which has an information-theoretic sense: the pointwise KL-
divergence between the two probabilities [27]. Finally, we
use rt(P ) to rank phrases in topic t in the descending order.

5. EXPERIMENTS
In this section we first introduce the datasets and the

methods used for comparison, and then describe our evalu-
ation on efficiency, consistency, and quality.

Datasets. Our performance study is on four datasets:

• DBLP title: A set of titles of recently published papers
in DBLP (www.dblp.org). The set has 1.9M titles, 152K
unique terms, and 11M tokens.

• CS abstract: A dataset of computer science paper ab-
stracts from Arnetminer (www.arnetminer.org). The set
has 529K papers, 186K unique terms, and 39M tokens.

• TREC AP news: A TREC news dataset (1998). It has
106K full articles, 170K unique terms, and 19M tokens.

• Pubmed abstract: A dataset of life sciences and biomed-
ical topic. We crawled 1.5M abstracts from Jan. 2012 to
Sep. 2013 on Pubmed (www.ncbi.nlm.nih.gov/pubmed).
The dataset has 98K unique terms and 169M tokens.

We remove English stopwords from all the documents.

Methods for comparison. We mainly evaluate EXP be-
cause it dominates the runtime, and its consistency in real-
world data is subject to empirical evaluation. We compare
the following topical hierarchy construction methods.

• hPAM – parametric hierarchical topic model. The hierar-
chical Pachinko Allocation Model [20] is a state-of-the-art
parametric hierarchical topic modeling approach. hPAM
outputs a specified number of supertopics and subtopics,
as well as the associations between them.

• nCRP – nonparametric hierarchical topic model. We choose
nCRP to represent this category for its relative efficiency.
It outputs a tree with a specified height. The number of
topics cannot be set exactly. We tune its hyperparameter
to generate an approximately identical number of topics
as other methods.

• splitLDA – recursively applying LDA, as discussed in Sec-
tion 2. This heuristic method is more efficienct than the
above two methods. We implement splitLDA on top of an
efficient single-machine LDA inference algorithm [30].

• CATHY – recursively clustering term co-occurrence net-
works. CATHY [27] uses a term co-occurrence network to
compress short documents and performs topic discovery
through an EM algorithm.

www.dblp.org
www.arnetminer.org
www.ncbi.nlm.nih.gov/pubmed


Figure 3: Total runtime on each dataset, H = 2, Ct = 5
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Figure 4: Runtime with varying scale

• STROD and its variations RTOD, RTOD2, RTOD3 – re-
cursively applying our EXP operator to expand the tree.
We implement several variations to analyze our scalability
improvement techniques: (i) RTOD: recursive tensor or-
thogonal decomposition without scalability improvement [3];
(ii) RTOD2: RTOD plus the efficient computation of whiten-
ing matrix by avoiding creation ofM2; (iii) RTOD3: RTOD
plus the efficient computation of tensor product by avoid-
ing creation of M3; and (iv) STROD: Algorithm 1 with
the full scale-up technique.

5.1 Efficiency
The first evaluation assesses the efficiency of different algo-

rithms when constructing a topical hierarchy with the same
depth and width.

Figure 3 shows the overall runtime in these datasets. STROD
is several orders of magnitude faster than the existing meth-
ods. On the largest dataset it reduces the runtime from
one or more days to 18 minutes in total. CATHY is the
second best method in short documents such as titles and
abstracts because it compresses the documents into term
co-occurrence networks. But it is still more than 100 times

slower than STROD due to many rounds of EM iterations.
splitLDA and hPAM rely on Gibbs sampling, and the former
is faster because it recursively performs LDA, and consid-
ers fewer dependencies in sampling. nCRP is two orders of
magnitude slower.

We then conduct analytical study of the runtime growth
with respect to different factors. Figures 4a–4c show the
runtime varying with the number of tokens, the tree height
and the tree width. We can see that the runtime of STROD
grows slowly, and it has the best performance in all occa-
sions. The margin of our method over others grows quickly
when the scale increases. In Figure 4b, we exclude hPAM
because it is designed for H = 2. We exclude nCRP from
all these experiments because it takes too long time to finish
(>90 hours with 600K tokens).

Figure 4d shows the performance in comparison with the
variations of STROD. Both RTOD and RTOD2 fail to fin-
ish when the vocabulary size grows beyond 1K, because the
third-order moment tensor M3(t) requires O(V 3) space to
create. RTOD3 also has limited scalability because the sec-
ond order moment tensor M2(t) ∈ RV×V is dense. STROD
scales up easily by avoiding explicit creation of these tensors.

5.2 Consistency
The second evaluation assesses the multi-run consistency

of different algorithms. For each dataset, we sample 10,000
documents and run each algorithm 10 times and measure
the variance among the 10 runs for the same method as fol-
lows. Each pair of algorithm runs generate the same num-
ber of topics, but their correspondence is generally unknown
(STROD makes an exception with its ability to obtain a
unique order of subtopics according to learned α). For ex-
ample, the topic o → 1 in the first run may be close to
o → 3 in the second run. We measure the KL divergence
between all pairs of topical term distributions between the
two runs, build a bipartite graph using the negative KL
divergence as the edge weight, and then use a maximum
matching algorithm to determine the best correspondence
(top-down recursively). Then we average the KL divergence
between matched pairs as the difference between the two
algorithm runs. Finally, we average the difference between
all 10 × 9 = 90 ordered pairs of algorithm runs as the final
variance. We exclude nCRP in this section, since even the
number of topics is not a constant after each run.

Table 2 summarizes the results: STROD has lowest vari-
ance in all the three datasets. The other three methods
based on Gibbs sampling have variance larger than 1 in all
datasets, which implies that the topics generated across mul-
tiple algorithm runs are considerably different.

We also evaluate the variance of STROD when we vary
the number of outer and inner iterations N and n. As shown
in Figure 5, the variance of STROD quickly diminishes when
the number of outer and inner iterations grow to 10. This
validates the theoretical analysis of their fast convergence.

In conclusion, STROD achieves consistent performance
with small runtime. It is stable and robust to be used as a
hierarchy construction method for large text collections.

5.3 Interpretability
The final evaluation assesses the interpretability of the

constructed topical hierarchy, via human judgment. We
evaluate hierarchies constructed from DBLP titles and TREC
AP news. For simplicity, we set the number of subtopics to



Table 2: The variance of multiple algorithm runs in each dataset

Method DBLP title CS abstract TREC AP news

hPAM 5.578 5.715 5.890
splitLDA 3.393 1.600 1.578
CATHY 17.34 1.956 1.418
STROD 0.6114 0.0001384 0.004522
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Figure 5: The variance and runtime of STROD when varying
# outer and inner iterations N and n (CS abstract)

be 5 for all topics. For hPAM, we post-process them to ob-
tain the 5 strongest subtopics for each topic. For all the
methods we use the same phrase mining and ranking pro-
cedure to enhance the interpretability. We do not include
nCRP in this study because hPAM has been shown to have
superior performance of it [20].

In order to evaluate the coherence of the hierarchy, we use
an Topic Intrusion (TI) task which were proposed in [27]:
Evaluators are shown a parent topic t and X candidate child
topics. X − 1 of the child topics are actual children of t in
the generated hierarchy, and the remaining child topic is
not. Each topic is represented by its top-5 ranked phrases.
Evaluators are asked to select the intruder child topic, or to
indicate that they are unable to make a choice.

For this study we setX = 4. 160 Topic Intrusion questions
are randomly generated. We then calculate the agreement
of the human choices with the actual hierarchical structure
constructed by the various methods. We consider a higher
match between a given hierarchy and human judgment to
imply a higher quality hierarchy. For each method, we re-
port the F-1 measure of the answers matched consistently
by three human judgers with CS background.

Figure 6 summarizes the results. STROD is the best per-
forming method in both datasets. This suggests that the
quality of the hierarchy is not compromised by the strong ef-
ficiency and consistency of STROD. As the tree goes deeper,
splitLDA degrades in quality due to inclusion of irrelevant
portion of each document. Compared to splitLDA, STROD
does not assign a document entirely to a topic. In addition,
STROD has a theoretically guaranteed inference method for
expansion, which may also account for the superior quality.

A subset of the hierarchy constructed from CS abstract
by ‘Expand’ is presented in Figure 7. For each non-root
node, we show the top ranked phrases. Node o→ 1 is about
‘data’, while its children involve database, data mining and
bioinformatics. The lower the level is, the more specific the
topic is, and the more multigrams emerge ahead of unigrams
in general. This initial hierarchy helps users quickly see the
main topics without going through all the documents. They
can then use other operators to make small changes to the
hierarchy to confidently and continuously refine the quality.

Figure 6: Topic intrustion study

6. DISCUSSIONS
In this work, we tackle the efficiency and consistency chal-

lenge of interactive topical hierarchy construction from large-
scale text data. We design a novel moment-based frame-
work to build the hierarchy recursively. Our framework di-
vides the construction task into simpler operations in which
users can be interactively involved. To support these opera-
tions, we design a new model for topical hierarchy which can
be learned recursively. For consistent inference, we extend
a theoretically guaranteed tensor orthogonal decomposition
technique to this model. Utilizing the special structure of
the tensor in our task, we scale up the algorithm signifi-
cantly. By evaluating our approach on a variety of datasets,
we demonstrate a prominent computational advantage. Our
algorithm generates consistent and quality topic hierarchy
100-1000 times faster than the state of the art, and the mar-
gin grows when the corpus size increases.

This invention opens up numerous possibilities for future
work. On the application side, it is foundation for building
new systems to support explorative generation of textual
data catalogs. Existing choice is either fully manual or fully
automatic. The former is high quality but labor-expensive,
and the latter is the opposite. By adding interaction capa-
bility to automated methods, there is hope to reduce human
effort and meanwhile allow users to have quality control. On
the methodology side, the advantage of STROD can be fur-
ther fulfilled by parallelization and adaptation to dynamic
text collections.
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Figure 7: Sample of hierarchy generated by STROD (two phrases only differing in plural/single forms are shown only once)
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