
On Demand Classification of Data Streams

Charu C. Aggarwal
IBM T. J. Watson Research

Center

charu@us.ibm.com

Jiawei Han
∗

Jianyong Wang
†

UIUC

{ hanj, wangj }@uiuc.edu

Philip S. Yu
IBM T. J. Watson Research

Center

psyu@us.ibm.com

ABSTRACT
Current models of the classification problem do not effec-
tively handle bursts of particular classes coming in at dif-
ferent times. In fact, the current model of the classification
problem simply concentrates on methods for one-pass clas-
sification modeling of very large data sets. Our model for
data stream classification views the data stream classifica-
tion problem from the point of view of a dynamic approach
in which simultaneous training and testing streams are used
for dynamic classification of data sets. This model reflects
real life situations effectively, since it is desirable to classify
test streams in real time over an evolving training and test
stream. The aim here is to create a classification system in
which the training model can adapt quickly to the changes
of the underlying data stream. In order to achieve this goal,
we propose an on-demand classification process which can
dynamically select the appropriate window of past training
data to build the classifier. The empirical results indicate
that the system maintains a high classification accuracy in
an evolving data stream, while providing an efficient solution
to the classification task.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms

Keywords
data streams, classification

∗The work was supported in part by the U.S. National Sci-
ence Foundation Grant IIS-03-08215 and an IBM Faculty
Award.
†Current Address: University of Minnesota at Twin-Cities,
Minneapolis, MN 55455. Email: jianyong@cs.umn.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

1. INTRODUCTION
In recent years, advances in data storage technology have

led to the ability to store the data for real time transactions.
Such processes lead to data which often grow without limit
and are referred to as data streams [3]. One important data
mining problem which has been studied in the context of
data streams is that of classification [5]. The main thrust on
data stream mining in the context of classification has been
that of one-pass mining [4, 6]. In general, the use of one-pass
mining does not recognize the changes which have occurred
in the model since the beginning of the stream construction
process [2]. While the work in [6] works on time changing
data streams, the focus is on providing effective methods for
incremental updating of the classification model. We note
that the accuracy of such a model cannot be greater than
the best sliding window model on a data stream. As our
empirical results will show, the true behavior of the data
stream is captured in a temporal model which is sensitive to
the level of evolution of the data stream.

The classification process may require simultaneous model
construction and testing in an environment which constantly
evolves over time. We assume that the testing process is
performed concurrently with the training process. This is
often the case in many practical applications, in which only
a portion of the data is labeled, whereas the remaining is
not. Therefore, such data can be separated out into the (la-
belled) training stream, and the (unlabelled) testing stream.
The most effective classification model to be used does not
stay constant over time, but varies with progression of the
data stream. If a static classification model were used for
an evolving test stream, the accuracy of the underlying clas-
sification process is likely to drop suddenly when there is a
sudden burst of records belonging to a particular class. In
such a case, a classification model which is constructed using
a smaller history of data is likely to provide better accuracy.
In other cases, a longer history of training provides greater
robustness.

In the classification process of an evolving data stream,
either the short term or long term behavior of the stream
may be more important, and it often cannot be known a-
priori as to which one is more important. How do we decide
the window or horizon of the training data to use so as to
obtain the best classification accuracy? While techniques
such as decision trees are useful for one-pass mining of data
streams [4, 6], these cannot be easily used in the context of
an on-demand classifier in an evolving environment. This is
because such a classifier requires rapid variation in the hori-
zon selection process due to data stream evolution. Further-

more, it is too expensive to keep track of the entire history
of the data in its original fine granularity. Therefore, the on-
demand classification process still requires the appropriate
machinery for efficient statistical data collection in order to
perform the classification process.

This paper is organized as follows. The basic statistical
constructs of the paper are discussed in the next section.
Section 3 discusses how these statistics may be used in or-
der to perform on-demand classification of a test stream.
The empirical results are discussed in section 4. Section 5
contains the conclusions and summary.

2. BASIC CONSTRUCTS
It is assumed that the training and test data streams each

consist of a set of multi-dimensional records X1 . . . Xk . . .
arriving at time stamps T1 . . . Tk Each Xi is a multi-
dimensional record containing d dimensions which are de-
noted by Xi = (x1

i . . . xd
i). In addition, each record Xi in

the training data stream is associated with a class label Ci.
We assume that the class id of the class Ci is i.

We will first begin by defining the concept of supervised

micro-clusters. While the micro-clustering concept of [1] is
useful for unsupervised clustering, we need to make modi-
fications in order to use this approach for the classification
process. The supervised micro-clusters are created from the
training data stream only. Each such micro-cluster corre-
sponds to a set of points from the training data, all of which
belong to the same class.

Definition 2.1. A supervised micro-cluster for a set of

d-dimensional points Xi1 . . . Xin with time stamps Ti1 . . . Tin

and belonging to the class class id is defined as the (2 ·d+4)
tuple (CF2x, CF1x, CF2t, CF1t, n, class id), wherein

CF2x and CF1x each correspond to a vector of d entries.

The definition of each of these entries is as follows:

• For each dimension, the sum of the squares of the data

values are maintained in CF2x. Thus, CF2x con-

tains d values. The p-th entry of CF2x is equal to
∑n

j=1
(xp

ij
)2.

• For each dimension, the sum of the data values are

maintained in CF1x. Thus, CF1x contains d values.

The p-th entry of CF1x is equal to
∑n

j=1
xp

ij
.

• The sum of the squares of the time stamps Ti1 . . . Tin

are maintained in CF2t.

• The sum of the time stamps Ti1 . . . Tin are maintained

in CF1t.

• The number of data points are maintained in n.

• The variable corresponding to class id corresponds to

the class label of that micro-cluster.

The above definition of the supervised micro-cluster for the
set of points C is denoted by CFT (C). This summary in-
formation is an extension of the cluster feature vector con-
cept discussed in [7]. Since each component in the definition
of the micro-cluster is an additive sum over different data
points, this data structure can be updated easily over dif-
ferent data streams.

We note that the nature of the micro-clusters and their
distribution over different classes may change considerably

Frame no. Snapshots (by clock time)

0 69 67 65
1 70 66 62
2 68 60 52
3 56 40 24
4 48 16
5 64 32

Table 1: A geometric time window

over time. Therefore, the effectiveness of the classification
model may be highly sensitive to the length of the horizon
used for the training process. In general, we would like to
use a horizon which provides the highest accuracy of the
corresponding classification model. This can be achieved by
storing the behavior of the micro-clusters at different mo-
ments in time. These stored micro-cluster states are referred
to as snapshots.

The snapshots need to be stored in such a way that suf-
ficient amount of information is maintained about different
time horizons. At the same time, the storage of an unnec-
essarily large number of time horizons makes the scheme
time and space inefficient. This is achieved with the use of a
geometric time frame. In this technique, snapshots are clas-
sified into different frame numbers which can vary from 0
to a value no larger than log2(T), where T is the maximum
length of the stream. The frame number of a particular
class of snapshots defines the level of granularity in time
at which the snapshots are maintained. Specifically, snap-
shots of frame number i are stored at clock times which are
divisible by 2i, but not by 2i+1. Therefore, snapshots of
frame number 0 are stored only at odd clock times. It is
assumed that for each frame number, at most max capacity
snapshots are stored.

We note that for a data stream, the maximum frame num-
ber of any snapshot stored at T time units since the begin-
ning of the stream mining process is log2(T). Since at most
max capacity snapshots of any order are stored, this also
means that the maximum number of snapshots maintained
at T time units since the beginning of the stream mining
process is (max capacity) · log2(T). One interesting charac-
teristic of the geometric time window is that for any user-
specified time window of h, at least one stored snapshot can
be found within a factor of 2 of the specified horizon. This
ensures that sufficient granularity is available for analyzing
the behavior of the data stream over different time horizons.
We will formalize this result in the lemma below.

Lemma 2.1. Let h be a user-specified time window, and tc

be the current time. Let us also assume that max capacity ≥
2. Then a snapshot exists at time ts, such that h/2 ≤ tc −
ts ≤ 2 · h.

Proof. Omitted.
The above result ensures that every possible horizon can

be closely approximated within a modest level of accuracy.
While the geometric time frame shares a number of con-
ceptual similarities with the pyramidal time frame [1], it is
actually quite different and also much more efficient. This
is because it eliminates the double counting of the snap-
shots over different frame numbers, as is the case with the
pyramidal time frame [1]. In Table 1, we present an exam-

ple of a frame table illustrating snapshots of different frame
numbers. The rules for insertion of a snapshot t (at time
t) into the snapshot frame table are defined as follows: (1)
if (t mod 2i) = 0 but (t mod 2i+1) 6= 0, t is inserted into
frame number i (2) each slot has a max capacity (which is
3 in our example). At the insertion of t into frame number
i, if the slot already reaches its max capacity, the oldest
snapshot in this frame is removed and the new snapshot in-
serted. For example, at time 70, since (70 mod 21) = 0 but
(70 mod 22) 6= 0, 70 is inserted into frame number 1 which
knocks out the oldest snapshot 58 if the slot capacity is 3.
Following this rule, when slot capacity is 3, the following
snapshots are stored in the geometric time window table:
16, 24, 32, 40, 48, 52, 56, 60, 62, 64, 65, 66, 67, 68, 69,
70, as shown in Table 1. From the table, one can see that
the closer to the current time, the denser are the snapshots
stored.

Since the results of this paper are tailored towards a rapidly
evolving data stream, the class structure of the underlying
data stream could change quickly during the classification
process. For example, a new class which has not been ob-
served in the entire history of the stream may suddenly
emerge because of the changes in the underlying process
which generates the stream. In such a case, if the entire his-
tory of the stream is used for classification, the results are
likely to be inaccurate because the recent class arrivals are
not reflected in the rest of the stream. Therefore, in such a
case it may be desirable to use a smaller and more recent
portion of the stream for the classification process. Another
example is a case in which a particular class may not have
arrived in the stream for a long period of time, but may
suddenly re-emerge at some point. In such a case, a well
chosen horizon would use a sufficiently long history, so that
the previous occurrence of the classes would be included in
the training process. Therefore, mechanisms are needed to
make decisions on the suitability of using a horizon of a given
length.

In order to achieve this goal, the incoming training data
stream is divided into two parts:

• A small portion of the stream is used for the process of
horizon fitting. The corresponding portion of the training
stream is referred to as the horizon fitting stream segment.
The number of points in the data used is denoted by kfit.
We note that the value of kfit is typically very small such
as 1% of the data.
• The remaining majority of the stream is used for accumu-
lation of the pertinent statistics corresponding to the micro-
clusters and class information.

The process of maintenance of supervised micro-clusters
belonging to different classes derives ideas from the nearest
neighbor and k-means algorithms. Because of the supervised
nature of the method, class labels need to be used during
the clustering process. At any moment in time, a maximum
of q micro-clusters are maintained by the algorithm. We
denote these micro-clusters by M1 . . .Mq. Associated with
each micro-cluster i, we create a unique id whenever it is
first created. As we shall subsequently see, the micro-cluster
maintenance algorithm requires a merging of multiple micro-
clusters into one micro-cluster. Only micro-clusters that
belong to the same class may be merged together during
the clustering process. When two such micro-clusters are

merged, a list of ids is created in order to identify the con-
stituent micro-clusters. The value of q is determined by
the amount of main memory available in order to store the
micro-clusters. The micro-clusters which are maintained in
main memory correspond to the current snapshot of sum-
mary statistics.

The creation of the initial micro-clusters is achieved as
an offline process at the beginning of the data stream pro-
cessing. For this purpose, the first InitNumber points are
stored on disk. An offline clustering algorithm is applied to
the disk resident points. An equal number of micro-clusters
is created for each class by using a separate k-means algo-
rithm on each class of data points. Thus, a separate set of
micro-clusters is created for each class of the data in the
initialization phase.

After the initialization phase, the micro-cluster mainte-
nance phase is initiated. Whenever a new data point Xik

arrives, it needs to be inserted into a micro-cluster belong-
ing to its own class. In some cases, no micro-cluster may
be relevant to the current data point. In such a case, a new
micro-cluster is created, and the current data point is placed
in it.

First, we attempt to place the data point in some pre-
existing micro-cluster. In order to do so, we find the distance
of each data point to the micro-cluster centroids which be-
long to the same class. We find the closest cluster Mp to the
data point Xik

. However, in many cases, the data point Xik

may not be sufficiently close to Mp and should be placed
in a micro-cluster of its own. This may happen because of
the arrival of an outlier point, or because of sudden changes
in the data stream itself. A sudden change may lead to a
new trend in the data stream which often exhibits itself in
the form of a new micro-cluster. In order to decide whether
a data point should belong to a pre-existing micro-cluster
or should be placed in a new cluster of its own, we use the
cluster feature vector of Mp. This is done in order to com-
pute a maximum boundary of the micro-cluster Mp. If the
data point Xik

lies within this maximum boundary, then
it is added to the micro-cluster Mp using the CF additiv-
ity property. The maximum boundary of the micro-cluster
Mp is defined in terms of the average deviation of the other
points from the centroid of this cluster. Specifically, the
micro-cluster is defined as a factor of t of the RMS devia-
tion of the data points in Mp from the centroid. We define
this as the maximal boundary factor. This definition of the
maximal boundary factor is valid only for clusters with more
than one point. For a cluster with only one previous point,
the maximum boundary is defined in a heuristic way. Specif-
ically, we choose it to be r times that of the next closest
cluster.

If the data point does not lie within the maximum bound-
ary of the nearest micro-cluster, then a new micro-cluster
must be created containing the data point Xik

. The class id
of this newly created micro-cluster is the same as the class of
Xik

. This newly created micro-cluster is assigned a new id
which can identify it uniquely at any future stage of the data
steam process. In order to insert this new micro-cluster, the
number of other clusters must be reduced by one. This can
be achieved by either deleting an old cluster or joining two
micro-clusters which belong to the same class.

The micro-cluster statistics maintenance algorithm deter-
mines if it is desirable to delete any of the current micro-
clusters. It is desirable to delete a micro-cluster, when it

is determined that such a cluster no longer has an active
presence in the stream. In order to do so, we find the aver-
age time stamp of the last m arrivals in the current micro-
cluster. This is estimated by using the mean and standard
deviation of the last time stamps which have arrived in the
current micro-cluster. The mean stamp of the micro-cluster
is given by µ = CF1t/n. The standard deviation is given

by σ =
√

CF2t/n − (CF1t/n)2. The average time stamp
of the last m arrivals is estimated by the m/(2 · n)-th per-
centile of the points in each cluster. This timestamp is
used as the approximate value of the recency. This value
is also referred to as the relevance stamp of the correspond-
ing micro-cluster. We determine if the least relevant time
stamp is below a user-defined threshold δ. In such a case,
it can be eliminated and a new micro-cluster can be cre-
ated with a unique id corresponding to the newly arrived
data point Xik

. When all relevance stamps are larger than
the user-defined threshold δ, two micro-clusters are merged
in order to create space for the new micro-cluster. Since
the micro-clusters are class-specific, we always merge micro-
clusters belonging to the same class. In order to determine
the micro-clusters to be merged, we find the pairwise dis-
tance between micro-clusters belonging to the same class.
The closest pair of micro-clusters are merged together. The
process of merging micro-clusters also requires some addi-
tional book-keeping in terms of the ids associated with the
individual micro-clusters. An idlist is created, which is a
union of the corresponding idlists of the pair being merged.
This ensures that there is clear tracking of the constituent
micro-clusters after the merging process.

In addition to the process of micro-cluster maintenance,
it is also necessary to store the micro-clusters on disk at
each moment in time. At each such time, we store away the
current set of micro-clusters (possibly on disk) together with
their id list, and indexed by their time of storage. Outdated
micro-clusters are deleted from disk.

3. CLASSIFICATION ON DEMAND
In this section, we will discuss the On Demand Stream

Classification Process. In order to perform effective classi-
fication of the stream, it is important to find the correct
time-horizon which should be used for classification. How
do we find the most effective horizon for classification at a
given moment in time? In order to do so, a small portion of
the training stream is not used for the creation of the micro-
clusters. This portion of the training stream is referred to as
the horizon fitting stream segment. The number of points in
the stream used for horizon fitting is denoted by kfit. The
remaining portion of the training stream is used for the cre-
ation and maintenance of the class-specific micro-clusters as
discussed in the previous section.

Since the micro-clusters are based on the entire history
of the stream, they cannot directly be used to test the ef-
fectiveness of the classification process over different time
horizons. This is essential, since we would like to find the
time horizon which provides the greatest accuracy during
the classification process. For this purpose, we use the fol-
lowing subtractive property:

Property 3.1. Let C1 and C2 be two sets of points such

that C1 ⊇ C2. Then, the cluster feature vector CFT (C1 − C2)

is given by CFT (C1) − CFT (C2).

We denote the snapshot of micro-clusters at time t by
S(t). Let us consider an example in which the current clock
time is tc, and it is desirable to use a horizon of length h in
order to find the micro-clusters in the time period (tc−h, tc).
In such a case, we find the stored snapshot which occurs just
before the time tc −h. For each micro-cluster in the current
set S(tc), we find the list of ids in each micro-cluster. For
each of the list of ids, we find the corresponding micro-
clusters in S(tc − h′), and subtract the CF vectors for the
corresponding micro-clusters in S(tc−h′). The resulting set
of micro-clusters correspond to the time horizon (tc −h, tc).
We will denote this final set of micro-clusters created from
the subtraction process by N (tc, h

′).
Once the micro-clusters for a particular time horizon have

been determined, they are utilized to determine the classi-
fication accuracy of that particular horizon. This process
is executed periodically in order to adjust for the changes
which have occurred in the stream in recent time periods.
For this purpose, we use the horizon fitting stream segment.
The last kfit points which have arrived in the horizon fitting
stream segment are utilized in order to test the classifica-
tion accuracy of that particular horizon. The value of kfit

is chosen while taking into consideration the computational
complexity of the horizon accuracy estimation. In addition,
the value of kfit should be small enough so that the points in
it reflect the immediate locality of tc. Typically, the value
of kfit should be chosen in such a way that the least re-
cent point should be no larger than a pre-specified number
of time units from the current time tc. Let us denote this
set of points by Qfit. Note that since Qfit is a part of the
training stream, the class labels are known a-priori.

In order to test the classification accuracy of the process,
each point X ∈ Qfit is used in the following nearest neigh-
bor classification procedure:

• We find the closest micro-cluster in N (tc, h) to X.
• We determine the class label of this micro-cluster and com-
pare it to the true class label of X. The accuracy over all
the points in Qfit is then determined. This provides the
accuracy over that particular time horizon.

The accuracy of all the time horizons which are tracked
by the geometric time frame are determined. The p time
horizons which provide the greatest dynamic classification
accuracy (using the last kfit points) are selected for the
classification of the stream. Let us denote the correspond-
ing horizon values by H = {h1 . . . hp}. We note that since
kfit represents only a small locality of the points within the
current time period tc, it would seem at first sight that the
system would always pick the smallest possible horizons in
order to maximize the accuracy of classification. However,
this is often not the case for evolving data streams. Con-
sider for example, a data stream in which the records for a
given class arrive for a period, and then subsequently start
arriving again after a time interval in which the records for
another class have arrived. In such a case, the horizon which
includes previous occurrences of the same class is likely to
provide higher accuracy than shorter horizons. Thus, such
a system dynamically adapts to the most effective horizon
for classification of data streams. In addition, for a stable
stream the system is also likely to pick larger horizons be-
cause of the greater accuracy resulting from use of larger
data sizes.

The classification of the test stream is a separate process
which is executed continuously throughout the algorithm.
For each given test instance Xt, the above described nearest
neighbor classification process is applied using each hi ∈ H.
It is often possible that in the case of a rapidly evolving
data stream, different horizons may report results in the
determination of different class labels. The majority class
among these p class labels is reported as the relevant class.

4. EMPIRICAL RESULTS
In order to evaluate the accuracy, efficiency, scalability,

and sensitivity of our On-Demand-Stream Classifier, a thor-
ough experimental and performance study was conducted
using both real and synthetic datasets. The study validates
the following claims: (1) The On-Demand-Stream Classi-

fier has much higher classification accuracy in comparison
with the simple one-pass classification algorithms over ei-
ther the entire dataset or a selected sliding window; (2)
The On-Demand-Stream Classifier has very good scalabil-
ity in terms of dimensionality and the number of class la-
bels, and has rather stable processing rate; and (3) The On-

Demand-Stream Classifier is also rather space-efficient: it
only needs to maintain a moderate number of class-labeled
micro-clusters for each snapshot and a very small number
of snapshots (i.e., the max capacity) for each order of the
geometric time window in order to achieve a high stream
classification accuracy.

All of our experiments were conducted on a PC with Intel
Pentium III processor, 512 MB memory, and Windows XP
professional operating system installed. We first tested the
accuracy of our On-Demand-Stream classifier against the
simple one-pass algorithms over either the entire data stream
or a selected sliding window of the stream data. The On-

Demand-Stream classifier was implemented according to the
description in this paper. To compute the accuracy of the
one-pass algorithm over the entire dataset, we used the latest
snapshot of micro-clusters to classify the test stream, and
for the one-pass algorithm over a sliding-window, we always
used a fixed horizon (e.g., 8 time units) and computed the
net snapshot of micro-clusters, and used these net micro-
clusters to classify the test stream data.

To test the processing rate and scalability of our classifier,
we used the network intrusion data set and a synthetic data
set. For the synthetic data set, we generated data points
belonging to different classes according to a certain proba-
bility distribution and to reflect the evolution of the stream
data over time, we randomly re-computed the probability of
the appearance of a certain class periodically. This makes
the classes evolve over time while several classes may ap-
pear in the same time slot. In addition, we use the following
notations in naming the synthetic datasets: ‘B’ indicates
the base size, i.e., the number of data points in the dataset,
while ‘C’ and ‘D’ indicate the number of class labels and
the dimensionality of each point, respectively. For exam-
ple, for dataset B200kC30D30, it contains totally 200K 30-
dimensional data points and 30 class labels.

We first evaluated the stream classification accuracy us-
ing the Network Intrusion Detection dataset. Here we define
microcluster-ratio as the number of micro-clusters used in
the On-Demand-Stream classifier divided by the number of
natural class labels. Unless otherwise specified, the param-
eters were set as follows: maximum boundary factor t=2,
microcluster-ratio=5, max capacity=32, init number=400,

and sliding window H=8 time units. In addition, in the fol-
lowing experiments we store away the current snapshot of
micro-clusters on disk every 1/4 time unit. This means that
the smallest best horizon in our testing is 1/4.

The first experiment was conducted with a stream speed
at 80 connections per time unit (i.e., there are 40 training
stream points and 40 test stream points per time unit). We
set the buffer size at 1600 points, which means upon receiv-
ing 1600 points (including both training and test stream
points) we’ll use a small set of the training data points (In
this case kfit =80) to choose the best horizon. We compared
the accuracy of the On-Demand-Stream classifier with two
simple one-pass stream classifiers over the entire data stream
and the selected sliding window (i.e., sliding window H = 8).
Figure 1 shows the accuracy comparison among the three
algorithms. We can see the On-Demand-Stream classifier

consistently beats the two simple one-pass classifiers. For
example, at time unit 2000, the On-Demand-Stream classi-

fier ’s accuracy is about 4% higher than the classifier with
fixed sliding window, and is about 2% higher than the classi-
fier with the entire dataset. Because the class distribution of
this dataset evolves significantly over time, either the entire
dataset or a fixed sliding window may not always capture
the underlying stream evolution nature. As a result, they
always have a worse accuracy than the On-Demand-Stream

classifier which always dynamically chooses the best horizon
for classifying.

Figure 2 shows the distribution of the best horizons (They
are the smallest ones if there exist several best horizons at
the same time). Although about 78.4% of the (smallest)
best horizons have a value 1/4, there do exist about 21.6%
best horizons ranging from 1/2 to 32 (e.g., about 6.4% of
the best horizons have a value 32). This also illustrates
that there is no fixed sliding window that can achieve the
best accuracy and the reason why the On-Demand-Stream

classifier can outperform the simple one-pass classifiers over
either the entire dataset or a fixed sliding window.

90

95

100

500 1000 1500 2000 2500
Stream (in time units)

A
cc

u
ra

cy
 %

On Demand Stream Fixed Sliding Window Entire Dataset

Figure 1: Accuracy comparison (Network Intru-
sion dataset, stream speed=80, buffer size=1600,
kfit=80, init number=400)

We have also generated one synthetic dataset B300kC5D20
to test the classification accuracy of these algorithms. This
dataset contains 5 class labels and 300K data points with 20
dimensions. We first set the stream speed at 100 points per
time unit. Figure 3 shows the accuracy comparison among
the three algortihms: The On-Demand-Stream classifier al-
ways has much better accuracy than the other two classi-

0.01

0.1

1

10

100

0.25 0.5 1 2 4 8 16 32
Best horizon

P
er

ce
n

ta
g

e
%

Stream speed =80 points per time unit

Figure 2: Distribution of the (smallest) best hori-
zon (Network Intrusion dataset, Time units=2500,
buffer size=1600, kfit=80, init number=400)

fiers. Figure 4 shows the distribution of the (smallest) best
horizons which can explain very well why the On-Demand-

Stream classifier has better accuracy.

80

85

500 1000 1500 2000
Stream (in time units)

A
cc

u
ra

cy
 %

On Demand Stream Fixed Sliding Window Entire Dataset

Figure 3: Accuracy comparison (Synthetic dataset
B300kC5D20, stream speed=100, buffer size=500,
kfit=25, init number=400)

0.01

0.1

1

10

100

0.25 0.5 1 2 4 8
Best horizon

P
er

ce
n

ta
g

e
%

Stream speed =100 points per time unit

Figure 4: Distribution of the (smallest) best horizon
(Synthetic dataset B300kC5D20, Time units=2000,
buffer size=500, kfit=25, init number=400)

We used both the Network Intrusion dataset and one syn-
thetic dataset B200kC30D30 to evaluate the processing rate
of the On-Demand-Stream classifier. The synthetic dataset
contains 200K points with 30 attributes and 30 class labels.
Figure 5 demonstrates the result. The figure shows that
the On-Demand-Stream classifier can classify about 600 test

points per second for the Network Intrusion data set, while
it can process about 320 test points per second for synthetic
dataset B200kC30D30. Also, we can see that the processing
rate will become a little slower as time goes on, but at a
later stage it will be very stable over time for both datasets.

0

200

400

600

800

1000

200 300 400 500 600 700 800 900 1000

Po
in

ts
 p

ro
ce

ss
ed

 p
er

 s
ec

on
d

Stream(in time units)

Network Intrusion
B200kC30D30

Figure 5: Processing rate

5. DISCUSSION AND CONCLUSIONS
In this paper, we presented a framework for classification

of dynamic evolving data streams. While previous research
has developed methods on the development of one-pass algo-
rithms for data stream classification, this paper proposes a
new framework and a different methodology for online clas-
sification and continuous adaption to the fast evolving data
streams. The new framework has been designed carefully
based on our analysis and reasoning and has been tested
based on our experiments on real intrusion detection data
sets. As evidenced by the empirical results, the system de-
veloped here is able to provide significantly better results
than a static classification model on classification accuracy.
In addition, it is efficient and scalable at handling large data
streams.

6. REFERENCES
[1] C. C. Aggarwal, J. Han, J.Wang, P. Yu. CluStream: A

Framework for Clustering Evolving Data Streams.
VLDB Conference, 2003.

[2] C. C. Aggarwal. A Framework for Diagnosing Changes
in Evolving Data Streams. ACM SIGMOD Conference,
2003.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, J.
Widom. Models and Issues in Data Stream Systems,
ACM PODS Conference, 2002.

[4] P. Domingos, G. Hulten. Mining High-Speed Data
Streams. ACM SIGKDD Conference, 2000.

[5] R. Duda, P. Hart. Pattern Classification and Scene

Analysis, Wiley, New York, 1973.

[6] G. Hulten, L. Spencer, P. Domingos. Mining Time
Changing Data Streams. ACM KDD Conference, 2001.

[7] T. Zhang, R. Ramakrishnan, M. Livny. BIRCH: An
Efficient Data Clustering Method for Very Large
Databases. ACM SIGMOD Conference, 1996.

