Mining Top-n Local Outliers in Large Databases’

Wen Jin

Anthony K. H. Tung

Jiawei Han

Intelligent Database Systems Research Lab
School of Computing Science
Simon Fraser University
Burnaby, B.C.,Canada V5A 1S6

Email: {wjin, khtung, han}@cs.sfu.ca

ABSTRACT

Outlier detection is an important task in data mining with
numerous applications, including credit card fraud detec-
tion, video surveillance, etc. A recent work on outlier detec-
tion has introduced a novel notion of local outlier in which
the degree to which an object is outlying is dependant on
the density of its local neighborhood, and each object can be
assigned a Local Outlier Factor (LOF) which represents
the likelihood of that object being an outlier. Although the
concept of local outliers is a useful one, the computation of
LOFvalues for every data objects requires a large number
of k-nearest neighbors searches and can be computationally
expensive. Since most objects are usually not outliers, it
is useful to provide users with the option of finding only n
most outstanding local outliers, i.e., the top-n data objects
which are most likely to be local outliers according to their
LOFs. However, if the pruning is not done carefully, finding
top-n outliers could result in the same amount of computa-
tion as finding LOFfor all objects. In this paper, we propose
a novel method to efficiently find the top-n local outliers
in large databases. The concept of “micro-cluster” is intro-
duced to compress the data. An efficient micro-cluster-based
local outlier mining algorithm is designed based on this con-
cept. As our algorithm can be adversely affected by the
overlapping in the micro-clusters, we proposed a meaningful
cut-plane solution for overlapping data. The formal analy-
sis and experiments show that this method can achieve good
performance in finding the most outstanding local outliers

1. INTRODUCTION

Outlier detection is an important data mining activity
with numerous applications, including credit card fraud de-

*The work was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC-
A3723) and the Networks of Centres of Excellence of Canada
(NCE/IRIS-3 and NCE/GEOID)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD 2001 San Francisco, California USA

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

tection, discovery of criminal activities in electronic com-

merce, video surveillance, pharmaceutical research, and weather

prediction.

An outlier is an observation that deviates so much from
other observations so that it arouses suspicions that it is
generated by a different mechanism [6]. Studies on outlier
detection are numerous and can be grouped into five general
categories. The first is distribution-based, where outliers
are observations which deviate from a standard distribution
(e.g., Normal, Poisson, etc.) [1]. Outlier detection can also
be depth-based which relies on the computation of differ-
ent layers of k-d convex hulls. In depth-based methods, out-
liers are objects in the outer layer of these hulls. The third
category of outlier detection method is distance-based. In-
troduced by Knorr and Ng in [7], a distance-based outlier
in a dataset D is an object with pct% of the objects in D
having a distance of more than d,;, away from it. This
notion of distance-based outlier generalizes many notions
from distribution-based approaches and is further extended
in [9] so that outliers can be more efficiently discovered and
ranked. In many clustering algorithms like [8], DBSCAN
[4], BIRCH [10] and CURE [5], outliers are by-products of
clustering and we refer to such outlier-detection method as
clustering-based.

While the above four categories of outlier detection are
interesting and useful in their own rights, our paper will
only focus on the fifth category which detect local outliers-
based on the local density of an object’s neighborhood. We
refer to this category as density-based. The concept of
a local outlier is an important one since in many applica-
tions, different portions of a dataset can exhibit very differ-
ent characteristics, and it is more meaningful to decide on
the outlying possibility of an object based on other objects
in its neighborhood. In view of this, [3] defines the con-
cept of a local outlier factor(LOF), which is intuitively
a measure of difference in density between an object and
its neighborhood objects. Unfortunately, the work done in
[3] requires the computation of LOFfor all objects which is
rather expensive because it requires a large number of k-
nearest-neighbors queries. As it is observed that many ob-
jects have LOFvalues which are very close and are unlikely to
be interesting outliers, we believe that a system should pro-
vide users with the option of constraining a search to only
the top-n local outliers instead of computing the LOFof ev-
ery object in a database.

Given our motivation, it is obvious that finding LOFfor all
objects and then selecting the top-n among them is not a
solution in our consideration. However, if careful pruning is

not done, finding the top-n LOFcan be as expensive as the
above naive method. This is because unlike global outlier
detection in which a data point can be immediately pruned
off if it cannot be an outlier, in local outlier detection the
points deletion may affect the LOFvalues of those objects
in its neighborhood. In short, we have a catch-22 situation
here: Without knowing where the possible local outliers are,
we cannot prune off our computation of density information;
however, without computing density information, we do not
know where the possible top-n outliers are.

In this paper, we first propose a novel method for top-n
local outliers mining that avoid computation of LOFfor most
objects if n<<N, N being the size of the database. The main
idea in our solution is to compress the data into “micro-
clusters” similar to those in [10] and efficiently estimate an
upper bound and lower bound on LOFof each object in the
database. By comparing the upper and lower bound for
the LOFof each object(micro-cluster), it will be immediately
clear that many of the objects cannot be in the list of top-n
local outliers. As such, only a small amount of computation
will be required for those candidate objects that are possibly
among the top-n.

As a central idea of our algorithm, we will need to esti-
mate the distance between a point o to a group of points
in a micro-cluster. Since each micro-cluster is represented
by a circle centered at the mean of its points, a very impre-
cise estimation will be made if the point o lies within the
circle. To solve this overlapping problem, we introduce a
novel “cut-plane” method to identify the boundary between
a data point and a micro-cluster.

The paper is organized as follows. In section 2, we present
the motivation and definition. In section 3, properties of
micro-cluster are introduced. In Section 4, we propose a
micro-cluster based top-n LOFalgorithm. In section 5, a
performance evaluation is made and the results are analyzed.
Section 6 concludes the paper.

2. DEFINITION OF LOCAL OUTLIERS

In this section, we briefly review the definition of local
outliers. Interested reader are referred to [3] for more details.

Let D be a database. Let p, q, o be some objects in D.
Let k be a positive integer. We use d(p,q) to denote the
Euclidean distance between objects p and q.

DEFINITION 1. (k-distance of p)
The k-distance of p, denoted as k-distance(p) is defined as
the distance d(p, o) between p and o such that:

1. for at least k objects o' € D\{p} it holds that d(p,o’) <
d(p,0), and

2. for at most (k — 1) objects o' € D\{p} it holds thatl
d(p, o) < d(p, o)
[m]
Intuitively, k-distance(p) provides a measure on the spar-
sity or density around the object p. When the k-distance of
p is small, it means that the area around p is dense and vice
versa.

DEFINITION 2. (k-distance neighborhood of p)

The k-distance neighborhood of p contains every object whose
distance from p is not greater than the k-distance, is denoted
as

Ni(p) = {q € D\{p}| d(p,q) < k-distance(p)}

Note that since there may be more than k objects within
k-distance(p), the number of objects in Ni(p) may be more
than k. Later on, the definition of LOF is introduced, and its
value is strongly influenced by the k-distance of the objects
in its k-distance neighborhood.

DEFINITION 3. (reachability distance of p w.r.t object
o)
The reachability distance of object p with respect to object o
18 defined as
reach-dist k (p,0)=max {k-distance(o),d(p,0)}.

O
DEFINITION 4. (local reachability density of p)
The local reachability density of an object p is the inverse of
the average reachability distance from the k-nearest-neighbors

of p.
ZoeNk(p) reach — distx(p, o)

Irdy(p) = 1/[|Ni(p) (P)] |

[}

Essentially, the local reachability density of an object p
is an estimation of the density at point p by analyzing the
k-distance of the objects in Ni(p). The local reachability
density of p is just the reciprocal of the average distance
between p and the objects in its k-neighborhood. Based
on local reachability density, the local outlier factor can be
defined as follows.

DEeFINITION 5. (local outlier factor of p)

Z N, llrjk(o)
y _ o (p) irde(p)
LOFy(p) = — |N:(p)|

[}

LOF is the average of the ratios of the local reachability
density of p and those of p’s k-nearest-neighbors. Initu-
itively, p’s local outlier factor will be very high is it’s local
reachability density is much lower than those of its neigh-
bors.

3. ALGORITHMFORFINDING TOP-N LO-
CAL OUTLIERS

Given the earlier definition of local outliers, our problem
is to find the top-n outliers in terms of LOF values when n
and k are provided by the users. In this section, we will first
analyze this problem and then introduce various concepts
involved in our algorithm for finding top-n local outliers ef-
ficiently.

3.1 Problem Analysis

From the definitions given in the previous section, our
analysis shows that an upper bound and lower bound on the
LOF of an object p can be obtained if an upper and lower
bound on the local reachability density of p and objects in
Ni(p) are available. More specifically, we have the following
theorem:

THEOREM 3.1. Let Irdi(o).lower and lrdy(o).upper denote
the lower and upper bound on the local reachability density
of an object o, and, o € Ni(p), then

Min{lrdy (o).lower} < LOFk(p) < Maz{lrdy (o) .upper}

irdy (p) .upper irdy (p).lower

Proof: Since LOF is the average of the ratios of Irdx(p)
and its k-neighborhood objects, this average must be higher
than Min{lrdx(o)|o € Ni(p)}/lrdk(p). By taking the lower
bound for Irdk(o) and the upper bound for Irdx(p), we re-
duce this estimate even further and thus we obtained a lower
bound for LOF%(p). By similar reasoning, we will obtain
an upper bound for LOF}y(p) by taking the maximum of
Irdy(0).upper and dividing it by Irdy(p).lower. |

As aresult of Theorem 3.1, we have the following corollary
which we will use to find an upper bound and lower bound
for the local reachability density of every object.

COROLLARY 3.1. Given an object p, o € Ni(p),its reach-
ability distance with respect to its k-neighborhood is bounded:

T <lrdi(p) <

1 1
Maz{reach-dist(p,o) Min{reach-disty(p,0)}

Explanation: Since the local reachability density of p is
the inverse of the average of reachability distance, it is not
difficult to see that the average will be lower than the max-
imum of reach-disti(p,0) and higher than the minimum of
reach-disty(p,0), o € Ni(p). Thus taking their inverse will
give the respective upper and lower bound. a

Given the above corollary, we will now have to use the
following theorem to bound the maximum and minimum
value of reach-disty(p,0). We derive the following theorem:

THEOREM 3.2. Let the upper and lower bound on the
k-distance of object o be denoted by k-distance(o).upper and
k-distance(o).lower respectively. We use d(o, p).upper and
d(o,p).lower to denote the upper, lower bound on the dis-
tance between object o and p,then we have the following two
inequalities

Maz(d(o, p).lower, k-distance(o).lower) < reach-dist(p, 0)

and

reach-dist(p,0) < Maz(d(o,p).upper, k-distance(o).upper)
[m]

The above theorem is derived naturally based on the def-
inition of reachability distance. With the derivation of the
above theorem, we can see that the computation of an up-
per and lower bound on the LOF of all points in a dataset
is dependent on an efficient way to find an upper and lower
bound on the distance between points and the k-distance of
each point.

3.2 Concepts

We will now look at the various concepts used in our al-
gorithm for finding top-n local outliers. The concept we use
is called “micro-clustering” which is similar to those in [10].
We compress the data into small clusters and represent each
small cluster using some statistical information. We define
a micro-cluster as follows:

DEFINITION 6. (Micro-Cluster)

A micro-cluster MC(n, c,r) is a summarized representation
of a group of data p1,...,pn, which are so close together
that they are likely to belong to the same cluster. Here,
c = %, is the mean center while r = maz{d(p:,c)},
1=1,...,n, is the radius. a

To ensure that not too much accuracy is sacrificed by
using micro-cluster, we limit radius of each micro-cluster
to be below a user-specified threshold, maxradius. When a
micro-cluster with a radius higher than maxradius is found,
it is split by choosing two data that are farthest apart in
the micro-cluster as seeds and reassigning other data left to
the nearest seed. Since we use a micro-cluster to represent
a dataset in outlier detection, the distance measurement to
a micro-cluster must also be defined.

In the rest of this paper, let I be a database and M be a
set of micro-clusters. A point in D is denoted as p(p1, ..., pm)
and a micro-cluster in M is denoted as MC(n,c,r).

THEOREM 3.3. Let p be an object and MC(n,c,r) a micro-
cluster. If p is greater than a distance of r from c, then the
minimum distance between an object p and a micro-cluster

MC will be:
Distarin(p, MC) = d(p,c) — r
and the mazimum distance between p and MC will be:

Distaraz(p, MC) =d(p,c) +r
a

Figure 1 illustrates the maximum and minimum distance
between a point p and a micro-cluster, M C(n,c,r) when p
is not within a distance of r from c. Intuitively, any point
within the micro-cluster MC(n,c,r) will be at a distance
of at least Distarin(p, MC) and at most Distarasz(p, MC)
from p. The situation is different if p is within a distance of
r from the center of the micro-cluster. In such case, while
the maximum distance remains unchanged, the minimum
distance must be set to 0. Such a situation, however, is
undesirable since we will be estimating the k-distance of a
point based on its distance to its neighboring micro-clusters,
and a k-distance of 0 will mean extremely high density. To
overcome this problem, our solution is to ensure that each
object in a micro-cluster M C(n,c,r) is in fact nearest to ¢
than to the center of any other micro-clusters. This can be
achieved by first forming micro-clusters using an algorithm
like BIRCH [10], fixing the centers of each micro-cluster and
then do a simple redistribution of the objects to the nearest
center. Note that such a process can be efficiently done since
the BIRCH structure resides in the main memory. With
such an assumption, we will now define the concept of a cut
plane.

DEFINITION 7. (Cut-Plane)

Let MC;, MC; be two micro-clusters, a cut-plane for
MC; and MCj, denoted as cp(MC;, MCy), is a hyperplane
that is perpendicular to the line between c; and c; and divide
the line into exactly two halves.

[}

We illustrate a cut plane between two micro-clusters M C;
and MC; in Figure 2. With the definition of a cut-plane,
we will now define the minimum distance between p and a
micro-cluster MC;(nj,c;,r;) when pis within a distance of
r; from c;.

DEerFINITION 8. (Min distance between an object and
a micro-cluster with overlapping)

Let p be an object within a micro-cluster MC;(ni, ci,ri). If
p is within a radius of rj to a micro-cluster MCj(nj,cj,rj),

Figure 1: Min/Max distance between an object and

a micro-cluster without overlapping.
1 MC(m,c, 1)

|
. cut plane

Figure 2: Minimum distance between an object and
a micro-cluster with overlapping.

|
= Dist 4 (MCi, MC))——
|

MCi

-

Dist) i (MCi, MCj)

Figure 3: Min/Max distance of micro-clusters.

let d(p,cp(MC;, MCy) denotes the perpendicular distance
of p from cut-plane cp(MC;, MC;). Then the minimum
distance between an object p and a micro-cluster MC; is

d(p,cp(MCi, MCy)). o

We illustrate the computation of the minimum distance
between p and an overlapping micro-cluster M C; in Figure
2. Note that such a formulation is based on the assumption
that p is always nearer to the center of M C; than MC;. We
now define the minimum and maximum distance between
two micro-clusters.

DEFINITION 9. (Min/max distance between MC; and
MCy)

Let MCi(ni, ci,ri) and MCj(nj, cj,r;) be two micro-clusters,
then the minimum distance between MC; and MC; is:

Distarin(MC;, MCy) = d(ci,cj) —ri — 1
and the mazimum distance between MC; and MC; is,
Distarar(MCi, MCy) = d(ci,cj) +ri + 1 O

Note that the definition assumes that the two micro-clusters
have no overlap. When overlap occurs, then the minimum
distance between the two micro-clusters will be 0. Having
defined the minimum and maximum distance between two
micro-clusters, we will now provide a corollary which will be
used to find the upper and lower bound for the k-distance
of an object with respect to the micro-clusters around it.

COROLLARY 3.2. Let p be an object and MC(n,c,r) be
the micro-cluster that contains p. Let MCy(n1,c1,r1), ...,
MCi(ni, ci,11) be a set of micro-clusters that could poten-
tially contain the k -nearest neighbors of p. For ease of
discussion, we will treat the other (n — 1) objects as micro-
clusters, i.e. each object o; is a micro-cluster MC;i(1, 0;,0).
Thus we will now havel +n — 1 micro-clusters.

1. Let {Distrrin(p, MCh),. .., Distarin(p, MCiyn—1)} be
sorted in increasing order, then a lower bound on the
k-distance of p, denoted as kmin-distance(p) will be
Distarin(p, MC;) such that ny + ... + n; > k, and
ni+...+ni—1 <k

2. Let {Distaraz(p, MCh), ..., Distyran(p, MCryn—1)} be
sorted in increasing order, then an upper bound on
the k-distance of p, denoted as kmaz-distance(p) will
be Distayraz(p, MCi) such that ny + ...+ n; > k and
ni+ ...+ ni1 < k.

[}

Given a micro-cluster M C containing p1, ... , pn, we will
use kmag-distance(MC) to denote Max(kymaqq-distance(p:),
.-+, kmagz-distance(p;)) and kmin-distance(MC) to denote
Min(kmin-distance(p1), ... , kmin-distance(p;)). We now de-
rive a bound for the internal reachability of a micro-cluster.

DEerFINITION 10. (Internal reachability bound of a micro-
cluster)
We define the internal reachability bounds of a micro-cluster

MC(n,c,r) as follows:
1. rmaz(MC) = Maz(2r, Maz(kmas-distance(M C)))

2. rmin(MC) = kmin-distance(MC)
a

Intuitively, given two objects p and o within micro-cluster
MC, rmaz(MC) and rpmin(MC) respresents the maximum
and minimum bound for reach-distance(p,0). This defini-
tion is used for estimating the reachability distance bound
of a pair of data within one micro-cluster.

DEeFINITION 11. (External reachability bound of two
micro-clusters)

We define the external reachability bounds of a micro-cluster
MC; with respect to another micro-cluster M C; as follow:

1. e (MCi, MC;) =
Maz(Distmaz (M Ci, MC)), kmas-distance(M Cy))

2. rmin(MCi, MC,) =
Maz(Distmin(MCi, MCy), kmin-distance(M Cy))
(]

Intuitively, given two objects p and o within micro-cluster
MC; and MC; respectively, rmas and rmin represents the
maximum, minimum bound for reach-distance(p, 0). This
definition is used for estimating the reachability distance
bound of a pair of data in different micro-clusters. One
thing to note is that the external reachability bound of two
micro-clusters will NOT be affected by overlapping between
the micro-clusters as long as we have good estimation of the
k-distance bound for the objects inside the micro-clusters.
Having introduced the various concepts, we will have a look
at our algorithm in the next section.

4. MICRO-CLUSTER-BASED ALGORITHM

In this section, we look at our micro-cluster-based algo-
rithm for finding top-n local outliers. The general steps of
our algorithm is as follows:

1. Preprocessing.
2. Computing LLOF bound for micro-clusters.

3. Rank top-n local outliers.

4.1 Preprocessing

In this step, the input data are pre-processed so that effi-
cient determination of k-distance bound can be done. Pre-
processing can further be divided into three steps as follows.

1. Load data into CF Tree. A sequential scan is per-
formed on the database and the objects are inserted
into a CF-tree [10]. At the end of the process, the
centers of all the CF's are recorded and inserted into a
memory-based X-tree [2].

2. Fix CF node and generate micro-clusters. A second
scan is then performed on the database and the objects
are assigned to their nearest centers computed in the
previous steps. In the process, the number of objects
and the radius of each micro-cluster are recorded.

3. Insert micro-clusters into X-tree. Each micro-cluster
is bounded by its MBR and is inserted into a different
memory-based X-tree from step (1).

4.2 Computing LOF Bound for Micro-Clusters

To compute an upper and lower bound for micro-clusters,
it requires one scan through the database and one scan
through the micro-clusters. The scan through the database
will first estimate a bound for the k-distance for each micro-
cluster MC, i.e., kmas-distance(M C) and kin-distance(MC).
The second scan will determine a bound for the reachabil-
ity distance and thus the LOF for each micro-cluster. We
describe the details as follows.

ALGORITHM 1. Algorithm k-distance-bound. Input: A set
of micro-clusters MC4, ..., MC}. _
Output: kpmaz-distance(MC;), kmin-distance(MC;) 1 <
1 <.

Method:

1. for each micro-cluster MC; do
find a micro-clusters set P of MC; by Colloary 3.2;
kmin-distance(MC;) = co; kmag-distance(MC;) = 0;
for each object p in MC; do
get kmin(p), kmaz(p) w.r.t P & objects in MC;.
if kmin(p) < kmin-distance(MC;)
kmin-distance(MC;) = kmin(p);
if kmaz(p) > kmaz-distance(MC5)
kmagz-distance(MC;) = kmaz (p);

© % > s fole

This algorithm is used to compute the k-distance bound
for each micro-cluster. Since the micro-clusters are in an
X-tree, step 2 can be efficiently performed [2] by examining
the MBR of the micro-clusters and computing the cut-plane
between two micro-clusters if needed.

After computing the k-distance bound for each micro-
cluster, we scan through the micro-clusters to compute the

LOF bound using Algorithm k-distance-bound.
ALGORITHM 2. Algorithm LOF -bound.

Input: MC,, ..., MC, and their k-distance-bound.
Output: LOF bound for each micro-cluster.
Method:

1.for each micro-cluster MC; do

2. find a micro-clusters set P of MC; by Colloary 3.2;

3. get internal rmaz(MC;) /rmin(MC;)bound for MC;.

4. LOF(MC;).upper = rmaz(MC;)/rmin(MC;);
LOF(MC;).lower = rymin(MC;) /rmaz(MC;);

5. for each micro-cluster MC; € P do

get external rmax(MCy, MC;),rmin(MCi, MC})

if LOF(MC;).upper < rmaz(MCi, MC})/rmin(MCi, MC})
LOF(MC;).upper = rmaz(MCi, MC3)/rmin(MC;, MCj);

if LOF(MC;).lower > rymin(MCi, MCj)/rmaz(MCs, MCj)

0. LOF(MC;).lower = rypin(MCi, MC}) [rmaz (M Ci, MC);

This algorithm is used to compute the LOF bound of a

micro-cluster. In steps 3 and 4, it first handles data within

one micro-cluster. Then in steps 6-10, it considers those

potential neighbor micro-clusters to obtain their lower and

upper bounds.

4.3 Rank Top-» Local Outliers

Given an upper and lower bound for the LOF of micro-
cluster, we can easily rank Top-n local outliers.

ALGORITHM 3. Algorithm Rank-TOPn-LOF.

Input: A set of MCh, ..., MC; and their LOF _bound.
Output: TOP-n local outliers.

Method:

IR

1. Sort the first n micro-clusters in ascending LOF.lower order
label the minimal one Min-TOPn-LOF;
2. for any other micro-clusters MC; do
3. if LOF(MC;).upper < Min-TOPn-LOF
4. then delete MC;;
5. else if LOF(MC;).lower > Min-TOPn-LOF
6. then delete the current sorted n-th micro-cluster;
7. add MC; into current top m sorted micro-clusters;
8. re-sort current m micro-clusters,
label the n-th as Min-TOPn-LOF;
9. for any data in the remaining micro-clusters MC’{ do

10. calculate detailed LOF value;
11. prune those that are impossible to become TOP-n LOFs;
12. Obtain TOP-n local outliers;

5. EXPERIMENTS

We compare our micro-cluster TOP-n LOF algorithm with
X-tree-based LOF method [3]. We did experiments on both
real and synthetic data sets but will only show the result for
the synthetic data due to lack of space. The experiments
are conducted on an PentiumlII-450 PC with 256 MB main
memory under Windows NT4.0 and implemented in Visual
C'4++46.0. The cost of time in the experiments includes build-
ing an index tree.

1600

—4— Top10 no CP
—#—Top50 no CP
—A—Top80 no CP
Top10 with CP
—%¥—Top50 with CP
—e— Tops0 vith CP

T T T
03 05 1 15 2 3 4 5 6 7 8
Max Radius(% of data region)

Number of unpruned Candidates

Figure 4: No. of unpruned candidates vs max-radius

The synthetic datasets we used for our experiments are
generated using Gaussian random distribution. We evaluate
the performance based on three aspects.

—4—Top10 no CP
—#—Top50 no CP
200 4 T
—A—Top80 no CP
Top10 with CP
150 .

—¥—Tops0 with CP
——Tops0 with CP

Time(sec.)

0 T T T T
03 05 1 15 2 3 4 5 6 7 8

Max Radius(% of data region)

12000 ~

10000
~ 8000 4 —+—2¢-ToP10
3 —8—10d-TOP10
n —&—20d-TOP10
% 6000 ——20-Nxtree
£ —%—10d-Ntree
= 4000 | o 200umee
2000 -
——————
0 T T T T T 1

: T T
100K 200K 300K 400K 500K 600K 700K 800K 900K
Size of Data

Figure 5: Running time vs max-radius

First, we investigate the pruning effect of TOP-n LOF
under the different max-radius of micro-clusters. Here the
max-radius is viewed as the percentage of the dataset’s ra-
dius. The number of candidate micro-clusters are plotted
against max-radius for n = 10, n = 50 and n = 80 in Fig-
ure 4 for two versions of our algorithm, one with cut plane
(abbreviated as “with CP”) and one without (abbreviated
as “without CP”). When a cut-plane is considered, it shows
that more micro-clusters will be pruned since much of the
overlapping data, which originally could not be separated,
now has a discernible distance from other data. In addition,
when the max-radius of a micro-cluster increases, less micro-
clusters will be pruned since more accuracy is lost and the
lower and upper bounds for the LOF of these micro-clusters
are more interleaved . Subsequently, as max-radius continue
to increase, the number of unpruned candidates decrease,
this is due to the overall decrease in the total number of
micro-clusters rather than an effect of our pruning.

Second, we plot the runtime of our algorithms against
the size of micro-clusters in Figure 5. It is clear that when
cut-plane is used, the runtime is usually lower than when
it is not used since more micro-clusters have been pruned.
We can also see that although there are very few candidate
micro-clusters when the max-radius is large, the running
time at these values still increase. This is because search
and computation time for each of these micro-cluster is large
as each of them contains more data points,

Third, to investigate the scalability of our algorithm with
regard to dimensionality and dataset size, we plot the run-
ning time of our algorithm for a top-10 local outlier query
against the size of the dataset in Figure 6. The dimension-
ality of the dataset are set at 2, 10 and 20. The graph shows
that the micro-cluster TOP-n LOF mining method outper-
forms naive X-tree-based method by a big margin especially
for high number of dimensions.

6. CONCLUSIONS

In this paper, we have proposed a novel and efficient
method for mining top-n local outliers. The strength of
the method is at that it avoids computation of LOFfor most
objects if n << N, where N is the size of the database. The
formal analysis and performance evaluation show that our
method is not only efficient in computation but also effective
at ranking most understandable local outliers.

Finding top-n local outliers is a new and promising re-
search topic in data mining. The future work may include
finding strong local outlier groups and finding (nested) local

Figure 6: Running time vs.dataset size

outlier at multiple levels of granularity.

Acknowledgment: Thanks to Helen Pinto and Joyce Lam for
proof reading the initial version of this paper.

7. REFERENCES

[1] V. Barnett and T. Lewis. Qutliers in Statistical Data.
John Wiley & Sons, 1994.

[2] S. Berchtold, D. Keim, and H.-P. Kriegel. The X-tree:
An efficient and robust access method for points and
rectangles. In Proc. 1996 Int. Conf. Very Large Data
Bases (VLDB’96), pages 28—-39, Bombay, India, Sept.
1996.

[3] M. M. Breunig, H. P. Kriegel, R. T. Ng, and
J. Sander. Lof: Identifying density-based local outliers.
In Proc. 2000 ACM-SIGMOD Int. Conf. Management
of Data (SIGMOD’00), Dallas, Texas, 2000.

[4] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases. In Proc. 1996 Int. Conf.
Knowledge Discovery and Data Mining (KDD’96),
pages 226-231, Portland, Oregon, Aug. 1996.

[5] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient
clustering algorithm for large databases. In Proc. 1998
ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’98), pages 73-84, Seattle, WA, June 1998.

[6] D. Hawkins. Identification of Outliers. Chapman and
Hall, London, 1980.

[7] E. Knorr and R. Ng. Algorithms for mining
distance-based outliers in large datasets. In Proc. 1998
Int. Conf. Very Large Data Bases (VLDB’98), pages
392-403, New York, NY, Aug. 1998.

[8] R. Ng and J. Han. Efficient and effective clustering
method for spatial data mining. In Proc. 1994 Int.
Conf. Very Large Data Bases (VLDB’9/), pages
144-155, Santiago, Chile, Sept. 1994.

[9] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient
algorithms for mining outliers from large data sets. In
Proc. 2000 ACM-SIGMOD Int. Conf. Management of
Data (SIGMOD’00), Dallas, Texas, 2000.

[10] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
an efficient data clustering method for very large
databases. In Proc. 1996 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’96), pages 103-114,
Montreal, Canada, June 1996.

