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ABSTRACT  
Motivation: The rapid accumulation of biological network 
data translates into an urgent need for computational meth-
ods for graph pattern mining. One important problem is to 
identify recurrent patterns across multiple networks to dis-
cover biological modules. However, existing algorithms for 
frequent pattern mining become very costly in time and 
space as the pattern sizes and network numbers increase. 
Currently, no efficient algorithm is available for mining re-
current patterns across large collections of genome-wide 
networks. 
Results: We developed a novel algorithm, CODENSE, to 
efficiently mine frequent coherent dense subgraphs across 
large numbers of massive graphs. Compared to previous 
methods, our approach is scalable in the number and size 
of the input graphs, and adjustable in terms of exact or ap-
proximate pattern mining. Applying CODENSE to 39 co-
expression networks derived from microarray data sets, we 
discovered a large number of functionally homogenous 
clusters and made functional predictions for 169 uncharac-
terized yeast genes.  
Availability: http://zhoulab.usc.edu/CODENSE/ 
Contact: xjzhou@usc.edu 

1 INTRODUCTION  
The recent development of high-throughput technologies 
provides a range of opportunities to systematically charac-
terize diverse types of biological networks. “Network Bi-
ology” has been an emerging field in biology. The variety 
of biological networks can be classified into two catego-
ries: (1) physical networks, which represent physical inter-
actions among molecules, e.g., protein-interaction, protein-
DNA interaction, and metabolic reactions; and (2) concep-
tual networks, which represent functional associations of 
molecules derived from genomic data, e.g., co-expression 
relationships extracted from microarray data, and genetic 
interactions obtained from synthetic lethality experiments. 

  
 * To whom correspondence should be addressed. 

While the physical network data is as-yet very limited in 
size, the large amount of microarray data allows us to infer 
conceptual functional associations of genes under various 
conditions for many model organisms, thus providing 
valuable information to study the functions and the dynam-
ics of biological systems.  

Studying the building principles of biological networks 
could potentially revolutionize our view of biology and 
disease pathologies (Barabasi & Oltvai, 2004).  The popu-
lar clustering approach can draw densely connected mod-
ules from biological networks, which are often biologically 
meaningful, e.g., a dense protein interaction subnetwork 
may correspond to a protein complex (Bader & Hogue, 
2003; Spirin & Mirny, 2003), and a dense co-expression 
network may represent a tight co-expression cluster 
(Sharan & Shamir, 2000). Due to the noisy nature of high-
throughput data, a significant number of spurious edges 
exist in biological networks, which may lead to the discov-
ery of false patterns. Since biological modules are ex-
pected to be active across multiple conditions, we can eas-
ily filter out spurious edges by mining frequent patterns in 
multiple biological networks simultaneously.  A straight-
forward approach is to aggregate these networks together 
and identify dense subgraphs in the aggregated graph.  
However, it could result in false dense subgraphs that may 
not occur frequently in the original networks.  Figure 1a il-
lustrates such an example with a cartoon of six graphs.  If 
we simply add these graphs together to construct a sum-
mary graph, we may find a dense subgraph comprising 
vertices a, b, c, and d.  Unfortunately, this subgraph is nei-
ther dense nor frequent in the original graphs.   

A potential solution to the false pattern problem is min-
ing frequent subgraphs directly. A subgraph is frequent if 
it occurs multiple times in a set of graphs.  Frequent sub-
graph discovery in general is considered a hard problem. 
However, biological networks can often be modeled as a 
special class of graph where each gene occurs once and 
only once in a graph. That means, our graph has distinct 
node labels, and we do not have the “subgraph isomor-
phism problem” which is NP-hard and so far constitutes 
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the bottleneck of subgraph frequency counting. We term 
such graphs relation graphs. Recently,  we and others have 
designed efficient approaches to identify frequent sub-
graphs across multiple relation networks by decomposing 
the networks into smaller pieces and applying pattern ex-
pansion techniques (Kuramochi & Karypis, 2004; Yan et 
al., 2005), or by performing frequent set mining with sub-
sequent connectivity checking (Koyuturk et al., 2004).  
However, these approaches encounter scalability and in-
terpretability issues when being applied to massive bio-
logical networks: (1) In both approaches we tested, the 
time and memory requirements increase exponentially 
with increasing size of patterns and increasing number of 
networks. The number of frequent dense subgraphs is ex-
plosive when there are very large frequent dense sub-
graphs, e.g., subgraphs with hundreds of edges.  (2)  A fre-
quent dense subgraph may not represent a tight association 
among its nodes.  Figure 2 shows a sample network data 
set.   Vertices e, c, f, h, d, and g form a frequent dense sub-
graph.  However, biologically it is more interesting to di-
vide this subgraph into two modules, one comprising e, c, 
f, and h; the other comprising h, d, g, and e since these two 
modules have different occurrences throughout this graph 
set (details see the figure caption). As one can see, fre-
quent dense subgraphs may not capture accurate informa-
tion for the discovery of biological modules.  

In this paper, we address the aforementioned two issues 
and develop a novel algorithm, called “CODENSE”, to 

mine coherent dense subgraphs, a concept having better 
interpretability than frequent graph.  All edges in a coher-
ent subgraph should exhibit correlated occurrences in the 
whole graph set.  We also term this kind of subgraph “net-
work module”.  According to the definition of coherent 
dense subgraph, we are able to distinguish the two mod-
ules shown in Figure 2.  Moreover, the design of 
CODENSE can solve the scalability issue.  Instead of min-
ing each biological network individually, CODENSE 
compresses the networks into two meta-graphs and per-
forms clustering in these two graphs only.  Thus, 
CODENSE can handle any large number of networks.  Us-
ing CODENSE, we can successfully identify high-quality 
network modules within limited time and memory.  

As a side product, CODENSE also provides a solution 
to a graph mining problem—discovery of overlapping 
graph clusters. It is known that under different conditions, 
one gene may serve different roles and be involved in dif-
ferent functional groups (Gasch & Eisen, 2002); thus iden-
tifying overlapping clusters is important in biological ap-
plications. However, most graph clustering algorithms fol-
low the methodology of graph partitioning (Spirin & 
Mirny, 2003; Van Dongen, 2000); they usually cannot 
identify overlapping clusters. For example, in Figure 1b, 
two cliques {a, b, c, d, e, f} and {e, f, h, i} share two 
common vertices {e, f}. If a partition-based method first 
identified the former clique, the latter clique will be 
missed. Here, as a component of CODENSE, we designed 
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Figure 1. Given six graphs with the same vertex set but different edge sets, we construct a summary graph by adding these six graphs to-
gether and by deleting edges that occur less than three times in the graphs. The dense subgraph in the summary graph {a, b, c, d} actually 
does not occur in any original graph. (b) The vertices e and f are shared by cliques {a, b, c, d, e, f} and {e, f, h, i}; they can be assigned to 
both cliques only by approaches that are able to detect overlapping dense subgraphs (cliques are the densest subgraphs).   

c 

d 
e 

f 

g 

h a 

b 

c 

d 

e 

g 

h 
a 

b 

c

d

e

g

h
f f a

b

c

d
e

f

g

h
a c

d

e

g

h 
a 

b 

c 

d 

e 

g

h
f f

bd d d d d
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a novel algorithm, MODES (Mining Overlapping DEnse 
Subgraphs), to identify overlapping graph clusters. 

As an application example, we used CODENSE to iden-
tify frequent co-expression clusters across multiple mi-
croarray data sets. A microarray data set is modeled as an 
unweighted and undirected network, where each gene is 
represented by one node and two genes are connected with 
an edge if they show high expression correlation. A 
densely connected subgraph in these networks corresponds 
to a tight co-expression cluster. However, several studies 
pointed out that clusters derived from a single microarray 
data set often include spurious links and may not be func-
tionally homogenous (Allocco et al., 2004; Clare & King, 
2002)  A recent study showed that genes co-expressed in 
multiple datasets tend to have the same functions (Lee et 
al., 2004). Here, applying our methods to 39 microarray 
data sets of S. cerevisiae, we demonstrated that recurrent 
expression clusters are very likely to be homogenous in 
function and regulation, and can be used to perform large-
scale functional annotation of uncharacterized genes.  

The remainder of this paper is organized as follows. 
Section 2 gives the problem formulation. Our algorithms 
of mining coherent dense subgraphs and overlapping dense 
subgraphs are examined in Section 3 and Section 4, re-
spectively. We give a thorough comparison between our 
approach and the others in Section 5. The experimental 
study and biological applications are examined in Section 
6. Section 7 concludes our study. 

2 PROBLEM FORMULATION 
A relation graph set consists of n undirected simple 

graphs, D={Gi = (V,Ei)}, i = 1,…,n, Ei ⊆ V×V, where a 
common vertex set V is shared by the graphs in the set. We 
denote the vertex set of a graph G by V(G) and  the edge 
set by E(G). Let wi(u, v) be the weight of an edge ei(u, v) in 
Gi. For an unweighted graph, wi(u, v) is equal to 1 if there 
is an edge between u and v, otherwise 0.  We choose to il-
lustrate the principles on unweighted and undirected 
graphs in this paper, although our algorithm should be ex-
tendable to weighted and directed graphs. 

Definition 1 (Support) Given a relation graph dataset, 
D={G1,G2,…,Gn}, where Gi=(V,Ei), the support of a graph 
g is the number of graphs (in D) where g is a subgraph, 
written support(g). A graph is frequent if its support is 
greater than a minimum support threshold.  

Definition 2 (Summary Graph)  Given a  relation graph 
dataset, D={G1,G2,…,Gn}, where Gi=(V, Ei), the summary 
graph of D is an unweighted graph Ĝ=(V, Ê) where an 
edge is present if it occurs in more than k graphs in D, 
where k is a user-defined support threshold (see an exam-
ple in Figure 1a). 

Definition 3 (Edge Support Vector) Given a relation 
graph dataset, D={G1,G2,…,Gn}, where Gi=(V, Ei), the 
support vector of an edge e, written w(e), is of length n 
where n is the number of graphs. The i-th element of w(e) 
corresponds to the weight of edge e in the i-th graph.  

The support vector of the edge (a, b) for the six graphs 
shown in Figure 1a is [1, 1, 1, 0, 0, 0], while the support 
vector of the edge (b, c) is [0, 0, 0, 1, 1, 1].  As one can 
see, edges (a, b) and (b, c) are not correlated in this data-
set, though both of them are frequent.  

We use a special graph, termed second-order graph (de-
noted as S), to illustrate the co-occurrence of edges across 
all graphs in a relation graph set D. Each edge in D is 
transformed into a vertex in S, and two vertices u and v in 
S will be connected if their corresponding edge support 
vectors w(u) and w(v) in D show high similarity. Depend-
ing on whether or not the edges are weighted, the similar-
ity measure could be Euclidean distance or Pearson’s cor-
relation.  Figure 3 (Step 3b) shows how to generate a sec-
ond-order graph from a set of edge support vectors.  For 
example, the Euclidean distance between the support vec-
tors of edges (c, e) and (c, i) is only 1, so we create an edge 
between the vertices (c, e) and (c, i) in the second-order 
graph S shown in Figure 3. In contrast to the second-order 
graph, we term the original graphs Gi the first-order 
graphs. The utilization of second-order graph discussed in 
this paper is one type of second-order analysis, a concept 
that has been proposed in our previous publication (Zhou 
et al., 2005). 

Definition 4 (Second-Order Graph) Given a relation 
graph dataset, D={G1,G2,…,Gn}, where Gi = (V,Ei), the 
second-order graph is an unweighted graph S=(V×V,Es), 
where the vertex set of S is the edge set of G, and an edge 
connects vertices u and v if the similarity between the cor-
responding edge support vectors w(u) and w(v) is greater 
than a threshold.  

In reality, if Gi is large and dense, S will be impractically 
large. Therefore, to achieve efficiency, in this paper we 
construct S each time only for a subgraph of the summary 
graph Ĝ.  

Definition 5 (Coherent Graph) Given a relation graph 
dataset, D={G1,G2,…,Gn}, where Gi=(V,Ei), a subgraph 
sub(Ĝ)  is coherent if all the edges of  sub(Ĝ) have support 
higher than k and the second-order graph of  sub(Ĝ) is 
dense.  
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Definition 6 (Graph Density) The density of a graph g, 
written density(g), is 2m/(n(n-1)) where m is the number of 
edges and n the number of vertices in g.  

The problem of mining coherent dense subgraphs is 
formulated as follows: given a relation graph dataset, 
D={G1,G2,…,Gn}, discover subgraphs g that satisfy the 
following two criteria simultaneously: (1) g is a densely 
connected subgraph of the summary graph; and (2) g is a 
coherent graph.  As discussed in the Introduction section, 
the coherent dense subgraphs have significant biological 
interests.  

3 CODENSE: MINING COHERENT DENSE 
SUBGRAPHS 

A scalable algorithm for mining coherent dense subgraphs 
must perform well despite increasing number of graphs 
and increasing size of patterns. In order to tackle this prob-
lem, we investigate the relation between a coherent dense 
subgraph and the summary graph as well as its second-
order graph. We make the following two observations:  

(1) If a frequent subgraph is dense, then it must be a dense 
subgraph in the summary graph. However, the reverse 
conclusion is not true. A dense subgraph in the sum-
mary graph may be neither frequent nor dense in the 
original data set (see Figure 1a for an example). 

(2) If a subgraph is coherent (its edges show high correla-
tion in their occurrences across a graph set), then its 
2nd-order graph must be dense.  

These two observations provide a clue to mining coherent 
dense subgraphs with reasonable computational cost. Ac-
cording to Observation 1, each frequent dense subgraph is 
a subgraph of a dense summary graph. We can start from 
the summary graph and mine dense summary subgraphs 
first. Once it is done, we can single out coherent subgraphs 
from dense summary subgraphs by mining their corre-
sponding second-order graphs.    

Our CODENSE algorithm consists of five steps, as out-
lined in Algorithm 1 and illustrated in Figure 3. In Steps 2, 
4, and 5, a novel algorithm to discover overlapping dense 
subgraphs, called “MODES,” is employed. We will de-
scribe the design of the MODES algorithm in Section 4. 

In Step 1, CODENSE builds a summary graph by elimi-
nating infrequent edges. 

In Step 2, CODENSE identifies dense subgraphs (possi-
bly overlapping) in the summary graph. While the dense 
subgraphs in the summary graph may not be truly fre-
quently occurring in the original graphs, they do serve as a 
superset of potential frequent dense subgraphs in the origi-
nal graphs. We start with this superset to refine the search 
results. 

 

f f

Figure 3.  CODENSE: Discover Coherent Dense Subgraphs Across Multiple Graphs (dense subgraphs are marked bold). 
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In Step 3, CODENSE builds a second-order graph for 
each dense summary subgraph. 

In Step 4, CODENSE identifies dense subgraphs in the 
second-order graph. The high connectivity among vertices 
in the second-order graph indicates that the corresponding 
edges show high similarity in their occurrences across the 
n original graphs.  

In Step 5, CODENSE discovers the real coherent dense 
subgraphs. Although a dense subgraph sub(S) found in 
Step 4 guarantees the co-occurrence of its edges across the 
n relation graphs, those edges may no longer form a 
densely connected graph in the original summary graph. 
To eliminate such cases, we convert the vertices in sub(S) 
back to edges and then apply the MODES algorithm to 
identify dense subgraphs. The resulting subgraphs by con-
struction will satisfy the criteria for coherent dense sub-
graphs: (1) they are dense subgraphs and all of their edges 
occur frequently; and (2) their edges are highly correlated 
in their occurrences across the n relation graphs.  

In comparison with previous frequent graph mining al-
gorithms, our algorithm may not show a significant advan-
tage when the number of relation graphs n is small. How-
ever, when n is large, CODENSE will achieve significant 
time and memory efficiency since it works on two graphs 
only: summary graph and second-order graph instead of 
the n graphs.  On the contrary, traditional frequent pattern 
mining algorithms will not work well for high numbers of 
large graphs due to the astronomical number of frequent 
patterns.   

In case the relation graphs do not contain a large amount 
of edges, we can skip the step of clustering the summary 
graph, and start from Step 3 by transforming all edges di-
rectly into the second-order graph with further steps un-
changed. The clustering of the summary graph serves the 
purpose of restricting the second-order graph to a reason-
able size to avoid excessive computation.  

4 MODES: MINING OVERLAPPING DENSE 
SUBGRAPHS 

The overlapping dense subgraph mining algorithm, 
called MODES, is frequently used in CODENSE. In this 
section, we present the details of its design. MODES is de-
veloped based on HCS (Mining Highly Connected Sub-
graphs) (Hartuv & Shamir, 2000), with two new features: 
(1) MODES is more efficient in identifying dense sub-
graphs; and more importantly, (2) MODES can discover 
overlapping subgraphs. 

It is computationally intractable to enumerate all dense 
subgraphs in a large graph. Usually, a large graph is first 
clustered hierarchically and those dense clusters are sin-
gled out. HCS is this kind of algorithm. It recursively par-
titions the graph into two subgraphs until its minimum cut  
is no less than half of its vertex set size.  

Definition 7 (Minimum Cut) Given a graph G, an edge 
cut is a set of edges Ec such that E(G)−Ec is disconnected. 
A minimum cut is the smallest set in all edge cuts.  

There are two issues remaining in HCS. First, HCS can 
not identify overlapping dense subgraphs because of its na-
ture of graph-partitioning. Second, the above recursive par-
titioning process is time-consuming. The fastest determi-
nistic minimum cut algorithm in practice has time com-
plexity O(|V||E| + |V|2log|V|), where |V| and |E| are the 
vertex set size and the edge set size of a given graph (Stoer 
& Wagner, 1997). The minimum cut criterion adopted by 
HCS favors cutting small sets of nodes from the graph. 
When applying the algorithm repeatedly to a large graph 
consisting of more than thousands of vertices, such unbal-
anced cuts could lead to unexpected high costs. As verified 
by our experiments, we found HCS often cuts off one node 
in each iteration, thus having time complexity O(|V|2|E|+ 
|V|3 log|V|).  

To avoid the undesirable bias for partitioning out small 
sets of vertices and to speed up the process, we apply the 
normalized cut (Shi & Malik, 2000) instead of minimum 
cut in the initial runs of the HCS algorithm. Normalized 
cut is able to better balance the sizes of the partitions. 
When the size of the partitions generated by normalized 
cut is reasonably small, we proceed with the minimum cut 
algorithm to identify dense subgraphs. We revert to the use 
of the minimum cut in the later stage to better exploit its 
power in clustering without severe effects on computa-
tional cost.  

In order to identify overlapping dense subgraphs, we de-
signed the following procedure, as outlined in Algorithm 2 
and illustrated in Figure 4: (1) We mine dense subgraphs 
using the above modified HCS algorithm in a given graph 
G. (2) Each discovered dense subgraph sub(G) is then 
condensed into a single vertex v’; any vertex v that does 
not belong to sub(G) will have an edge with v’ if v has 

 

1: build a summary graph Ĝ across multiple relation 
graphs G1,G2, …, Gn;  

2: mine dense summary subgraphs sub(Ĝ) in Ĝ using 
MODES; 

    for each dense summary subgraph sub(Ĝ) do 
3:     •construct the second-order graph S; 
4:     •mine dense subgraphs sub(S) in S using 

MODES; 
5:     •for each dense subgraph sub(S) do  

*convert sub(S) into the first-order graph G; 
*mine dense subgraphs sub(G) in G using 
MODES; 

*output sub(G); 

ALGORITHM 1: CODENSE 
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edge with a vertex in sub(G).  (3) The condensed graph, 
written G’, is then re-clustered using the above modified 
HCS algorithm. (4) Once the clustering is done, if any 
newly discovered dense subgraph sub(G’) contains con-
densed vertices, MODES restores the condensed vertices 
back into subgraphs. To avoid the repetitive discovery of 
already discovered dense subgraphs, MODES conducts the 
following to focus on the vertices that have not been clus-
tered previously: for a restored subgraph C, MODES re-
moves the vertices v (v∈C) where v is connected to less 
than p% of the vertices in V(sub(G’))-V(C). Since the re-
sulting subgraph sub(G’) may not be dense any more, in 
order to extract the dense subgraphs, we perform Step 1 
again on sub(G’) to identify its dense subgraphs. This pro-
cedure is repeated until no new dense graph is discovered.  
To speed up the computation, we require that a new dense 
subgraph should have less than 90% overlap with any ex-
isting dense subgraph.  

The running time of computing normalized cut is deter-
mined by the extraction of the second smallest eigenvalue 
of I-D-1/2WD-1/2, where W(i, j) is the weight of edge (i, j), 
D(i, i) = ∑j W(i, j).  Its complexity is O(nc), 1 ≤ c ≤ 3, 
(O(n3) is the upper bound on solving the eigensystem of an 
n-dimension square matrix) (Shi & Malik, 2000).  Empiri-
cally, the value of c is around 1.5 when the graph is very 
sparse (Shi & Malik, 2000). Assume a graph G = (V, E) is 
clustered to k partitions V1, V2, ... Vk, where V1 U V2 U ... U 
Vk = V.  The total cost of clustering these k partitions is 
O(|V1|c+|V2|c + … + |Vk|c) which is at most O(|V|c) given 
c≥1. For hierarchical recursive clustering, the cost is 
O(d|V|c), where d is the largest recursive steps. The value 
of d is between O(log|V|) and O(|V|). Since normalized cut 
prefers balanced partitions, in general, d is far away from 
|V| but close to log |V|, which means our algorithm 
MODES can run much faster than the worst case. 

MODES may iterate several times in order to discover 
overlapping dense subgraphs.  Each iteration involves a hi-
erarchical clustering. Assume that the maximum number 
of recursions for a given graph is r (Algorithm 2, 

MODES). The running time of MODES is O(r|V|2.5) for a 
sparse graph. In practice, we may restrict the recursion 
depth. 

Figure 4 illustrates a clustering example of mining over-
lapping dense subgraphs. The upper-left graph in the figure 
is the original graph. Obviously, it has two dense con-
nected subgraphs. The readers can simulate our MODES 
algorithm to detect these two subgraphs. As demonstrated 
in this example, MODES is able to discover some dense 
subgraphs that traditional clustering approaches cannot 
find.  

5 COMPARISON WITH OTHER METHODS 
Our approach proposed so far simplifies the problem of 

identifying coherent dense subgraphs across n graphs into 
a problem of identifying dense subgraphs in two special 
graphs: the summary graph and the second-order graph.  
Here, we compare CODENSE with other methods and 
highlight its major advantages. 

By transforming all necessary information of the n 
graphs into two graphs, CODENSE achieves significant 
time and memory efficiency.  Prior frequent graph mining 
approaches, mostly based on graph pattern expansion 
technique (Kuramochi & Karypis, 2004; Yan et al., 2005), 
iteratively extend frequent patterns and check their sup-
port.  However, these approaches are infeasible in discov-
ering large patterns. The problem of counting the number 
of distinct maximal frequent subgraphs is #-P-complete, 
thereby providing a strong implication that the problem of 
mining maximal frequent subgraphs may be NP-hard 
(Yang, 2004).  

CODENSE can mine coherent subgraph patterns which 
likely represent true network modules. As discussed in the 
introduction section, frequent patterns may contain sub- 

1: mine dense subgraphs, sub(G), in a given graph G using 
the modified HCS algorithm in which normalized-cut 
and min-cut are combined for recursive partitions;  

2: for each dense subgraph sub(G) do 
• condense sub(G)  into a condensed vertex v’ in the 

original graph;  
denote the condensed graph by G’; 

3: mine dense subgraphs sub(G’) from the condensed graph 
G’ using the modified HCS algorithm again; 

4: for each dense subgraph sub(G’)  do 
if sub(G’) contains any condensed vertex then 

(a) restore each condensed component C in 
sub(G’) ; 
(b) remove vertices v, if v∈C and v is connected 
to less than p%(|V(sub(G’))|-|V(C)|) vertices; 
• repeat Steps 1-4 until no new dense sub-

graph is discovered in sub(G’); 

ALGORITHM 2: MODES 
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components that differ significantly in their support, while 
this is not an issue for coherent patterns.  

CODENSE can mine both exact and approximate pat-
terns. We can control the similarity threshold of the edge 
support vectors for edge construction in the second-order 
graph as well as the density threshold for the subgraph dis-
covery in the second-order graph. The lower the two 
thresholds, the higher the degree of approximation in the 
output of CODENSE. Conversely, if the support vector 
similarity threshold is set to be 100% and the 2nd-order 
dense subgraph is required to form cliques, the identified 
subgraphs shall occur exactly in the same graphs. 

CODENSE can be extended to pattern mining on 
weighted graphs since the core algorithms, normalized-cut 
and minimum-cut based clustering, can be applied to both 
weighted and unweighted graphs. 

CODENSE can be further modified and extended to 
identify more subtle patterns. For example, instead of clus-
tering edges with overall similar edge support vectors, one 
may use bi-clustering algorithms (Cheng & Church., 2000) 
to identify edges showing similar supports in a subset of 
data sets. Efficient algorithm design for this purpose is cur-
rently under development. 

6 EXPERIMENTAL STUDY 
6.1 Graph modeling and parameter setting 
In this study, we use the co-expression networks derived 
from microarray data sets as a testing system for 
CODENSE.  We integrated 39 yeast microarray data sets, 
each comprising the expression profiles of 6,661 genes in 
at least 8 experiments, from Stanford Microarray Database 
and the NCBI Gene Expression Omnibus (details of the 
data set are available at http://zhoulab.usc.edu/CODEN-
SE/). From each microarray data set, we construct a rela-
tion network where two genes are connected if they show 
strong similarity in their expression patterns measured by 
Pearson’s correlation. We transform the Pearson’s corre-
lation (denoted as r) into another quan-
tity, 22 1)2( rrn −− , and model this quantity as a t-
distribution with n-2 degrees of freedom, where n is the 
number of measurements used in the computation of the 
Pearson’s correlation.  

We construct a summary graph Ĝ, collecting edges with 
support at least 6 over the 39 relation networks. MODES is 
first applied to Ĝ to identify subgraphs with density ≥ d1. 
For each identified subgraph, we then construct a 2nd-order 
graph by transforming edges to vertices. Here, we build the 
edge support vector (of length 39) by computing the Pear-
son’s correlation between the expression profiles of two 
genes (two vertices) in each of the 39 data sets (note that 
this is different from the binary edge support vectors illus-
trated in Figure 3). If the Pearson’s correlation between 
two edges’ support vectors is significant at α=0.001 level, 
we connect their transformed vertices with an edge in the 

2nd-order graph. We again apply the MODES algorithm to 
the 2nd-order graph to identify subgraphs with density ≥ d2. 
Such identified 2nd-order graph is then transformed back to 
the summary graph (vertices → edges), and MODES is 
employed once more to identify subgraphs with density ≥ 
d3.  In this experiment, we set the three density cutoffs d1 = 
d2 = d3 = 0.4. However, they can be adjusted to accommo-
date users’ specific needs. For example, decreasing d1 and 
d3 will favor sparse coherent patterns; and increasing d2 
will strengthen the co-occurrence of edges across all net-
works in an identified pattern. In this study, we only focus 
on the coherent subgraphs with at least four vertices.  
 
6.2 Functional module discovery 
We applied CODENSE to discover coherent clusters 
across the 39 co-expression networks and compare the re-
sult with the dense subgraphs generated by MODES alone. 

To quantify the comparison, we assess the clustering 
quality by determining the percentage of functionally ho-
mogenous clusters among all identified clusters. We used 
the Gene Ontology (GO) biological process annotation, 
and consider a cluster to be functionally homogenous if (1) 
the functional homogeneity modeled by the hypergeomet-
ric distribution (Wu et al., 2002) shall be significant at 
α=0.01; and (2) at least 40% of its member genes with 
known annotations belong to a specific GO functional 
category.  Using the GeneOntology biological process an-
notation, we define specific functions to be those associ-
ated with GeneOnology nodes that are more than 5 levels 
below the root.   

We found that CODENSE significantly increased the 
percentage of functionally homogenous clusters from the 
MODES results by filtering out larger amounts of noisy 
genes or noisy clusters. MODES identified 366 clusters, 
among which 151(42%) are functionally homogenous; 
Starting with the 366 clusters, after the 2nd-order cluster-
ing, CODENSE identified 770 clusters that have at least 4 
annotated genes. 76% of these clusters are functionally 
homogenous. This shows a 34% increase of functionally 
homogenous clusters compared to the MODES results. 

The major performance improvement of CODENSE 
over MODES is attributed to the power of the 2nd-order 
clustering in eliminating dense summary subgraphs whose 
edges do not show co-occurrence across all networks. For 
example, MODES identified a five-gene clique in the 
summary graph, {MSF1, PHB1, CBP4, NDI1, SCO2}. 
However, the five genes come from diverse functional 
categories such as “protein biosynthesis”, “replicative cell 
aging”, and “mitochondrial electron transport”.  In fact, al-
though all edges of this clique occur in at east 6 networks, 
their co-occurrence is not significant across the 39 net-
works (see Figure 5a). The 2nd-order clustering can filter 
out such pseudo-clusters, therefore provides more reliable 
results. 
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FIGURE 5.  (a) The edge occurrence profile of the five-gene clique in the summary graph. (b) Shown are the coherent dense sub-
graph containing 6 genes, all 5 genes except ASC1 are known to be involved in protein biosynthesis. ASC1 is therefore to be predicted 
to have this function as well. 

(a) 

Moreover, we found instances in which the 2nd-order 
clustering can remove the noisy genes in a functionally di-
verse cluster so that its subcluster(s) becomes functionally 
homogenous.  For example, in a cluster containing 54 
genes that are associated with diverse functional catego-
ries, such as “organic acid metabolism”, “carboxylic acid 
metabolism", and “amino acid and derivative metabolism”,  
none of those categories is significantly over-presented in 
this cluster.  After the 2nd-order clustering, a coherent sub-
cluster emerges with 7 annotated genes, which is domi-
nated by the function “organic acid metabolism” (p-
value=2.18e-05). 
 
6.3 Functional annotation 
The large number of functionally homogenous clusters 
identified by CODENSE provides a solid foundation for 
functional annotation of uncharacterized genes.  For those 
clusters containing unknown genes, if the most dominating 
GO functional category is significantly over-represented 
(Bonferroni corrected hypergeometric P-value <0.01), we 
annotated the unknown genes with that function. To assess 
the prediction accuracy of our method, we employed a 
“leave-one-out” approach by masking a known gene to be 
unknown, and assign its function based on the remaining 
known genes in the cluster. We consider a prediction to be 
correct, if the lowest common ancestor of the predicted 
and known functional categories of that gene is 5 levels 
below the root in the GO hierarchy. That is, the predicted 
and the known categories will merge into the same cate-
gory at least at the level 6 of the GO hierarchy. Note that 
the annotated yeast genes encompass 160 functional cate-
gories at the level 6 of the GO hierarchy. We have as-
signed functions to 448 known genes, and achieved a pre-
diction accuracy of 50%.   

By applying this approach to unknown genes, we made 
functional prediction for 169 genes, covering a wide range 
of functional categories from cellular protein metabolism, 
protein biosynthesis, ribosome biogenesis, nucleobase, nu-
cleoside, nucleotide and nucleic acid metabolism, cellular 

biosynthesis, etc.  Figure 5b illustrates an example of our 
predictions, in which the uncharacterized gene ASC1 is 
predicted to be involved in “protein biosynthesis”, because 
all of the remaining 5 genes in the same subgraph partici-
pate in that biological process.  The comprehensive predic-
tion results are available at 
http://zhoulab.usc.edu/CODENSE/. Numerous of our pre-
dictions are supported by experimental studies in the litera-
ture. For example, we predicted RRP15 to participate in 
“ribosome biogenesis”. According to a personal communi-
cation between Fatica and SGD in 2004, this gene is in-
volved in pre-rRNA processing. We assigned the function 
“protein biosynthesis” to YMR116C; and two studies 
showed that it is involved in translation regulation 
(Chantrel et al., 1998) and control  (Gerbasi et al., 2004). 
We predicted QRI5 to be involved in “protein biosynthe-
sis”; QRI5 has been shown to participate in a common  
regulatory process together with MSS51 (Simon et al., 
1992) and the GO annotation of MSS51 is  “positive regu-
lation of translation and protein biosynthesis”.  
 
7. CONCLUSIONS 

We developed a novel algorithm, CODENSE, to effi-
ciently mine coherent dense subgraphs across massive bio-
logical networks. In comparison with previous approaches, 
CODENSE is scalable in the number and the size of the 
networks to mine, adjustable in terms of exact or approxi-
mate coherent pattern mining, and extendable to weighted 
and directed networks. It provides an efficient tool for the 
identification of network modules and for the functional 
discovery in the ever increasing biological networks. The 
method can integrate heterogeneous network data (e.g., 
protein interaction network, genetic interaction network, 
and co-expression networks) to reveal consistent biological 
signals.  The discovered network modules can be used in a 
variety of biological applications, e.g., predict the func-
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tions of unknown genes, construct the transcription mod-
ules, and infer the potential protein assembly mechanisms.  
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