
Vol. 1 no. 1 2005
Pages 1–1

© Oxford University Press 2005 1

BIOINFORMATICS

Mining coherent dense subgraphs across mas-
sive biological networks for functional discovery
Haiyan Hu1, Xifeng Yan2, Yu Huang1, Jiawei Han2, and
Xianghong Jasmine Zhou1∗
1Program in Molecular and Computational Biology, University of
Southern California, Los Angeles, CA 90089, USA and 2Department of
Computer Science, University of Illinois at Urbana-Champaign, Ur-
bana, IL 61801

ABSTRACT
Motivation: The rapid accumulation of biological network
data translates into an urgent need for computational meth-
ods for graph pattern mining. One important problem is to
identify recurrent patterns across multiple networks to dis-
cover biological modules. However, existing algorithms for
frequent pattern mining become very costly in time and
space as the pattern sizes and network numbers increase.
Currently, no efficient algorithm is available for mining re-
current patterns across large collections of genome-wide
networks.
Results: We developed a novel algorithm, CODENSE, to
efficiently mine frequent coherent dense subgraphs across
large numbers of massive graphs. Compared to previous
methods, our approach is scalable in the number and size
of the input graphs, and adjustable in terms of exact or ap-
proximate pattern mining. Applying CODENSE to 39 co-
expression networks derived from microarray data sets, we
discovered a large number of functionally homogenous
clusters and made functional predictions for 169 uncharac-
terized yeast genes.
Availability: http://zhoulab.usc.edu/CODENSE/
Contact: xjzhou@usc.edu

1 INTRODUCTION
The recent development of high-throughput technologies
provides a range of opportunities to systematically charac-
terize diverse types of biological networks. “Network Bi-
ology” has been an emerging field in biology. The variety
of biological networks can be classified into two catego-
ries: (1) physical networks, which represent physical inter-
actions among molecules, e.g., protein-interaction, protein-
DNA interaction, and metabolic reactions; and (2) concep-
tual networks, which represent functional associations of
molecules derived from genomic data, e.g., co-expression
relationships extracted from microarray data, and genetic
interactions obtained from synthetic lethality experiments.

 * To whom correspondence should be addressed.

While the physical network data is as-yet very limited in
size, the large amount of microarray data allows us to infer
conceptual functional associations of genes under various
conditions for many model organisms, thus providing
valuable information to study the functions and the dynam-
ics of biological systems.

Studying the building principles of biological networks
could potentially revolutionize our view of biology and
disease pathologies (Barabasi & Oltvai, 2004). The popu-
lar clustering approach can draw densely connected mod-
ules from biological networks, which are often biologically
meaningful, e.g., a dense protein interaction subnetwork
may correspond to a protein complex (Bader & Hogue,
2003; Spirin & Mirny, 2003), and a dense co-expression
network may represent a tight co-expression cluster
(Sharan & Shamir, 2000). Due to the noisy nature of high-
throughput data, a significant number of spurious edges
exist in biological networks, which may lead to the discov-
ery of false patterns. Since biological modules are ex-
pected to be active across multiple conditions, we can eas-
ily filter out spurious edges by mining frequent patterns in
multiple biological networks simultaneously. A straight-
forward approach is to aggregate these networks together
and identify dense subgraphs in the aggregated graph.
However, it could result in false dense subgraphs that may
not occur frequently in the original networks. Figure 1a il-
lustrates such an example with a cartoon of six graphs. If
we simply add these graphs together to construct a sum-
mary graph, we may find a dense subgraph comprising
vertices a, b, c, and d. Unfortunately, this subgraph is nei-
ther dense nor frequent in the original graphs.

A potential solution to the false pattern problem is min-
ing frequent subgraphs directly. A subgraph is frequent if
it occurs multiple times in a set of graphs. Frequent sub-
graph discovery in general is considered a hard problem.
However, biological networks can often be modeled as a
special class of graph where each gene occurs once and
only once in a graph. That means, our graph has distinct
node labels, and we do not have the “subgraph isomor-
phism problem” which is NP-hard and so far constitutes

Hu et al.

2

the bottleneck of subgraph frequency counting. We term
such graphs relation graphs. Recently, we and others have
designed efficient approaches to identify frequent sub-
graphs across multiple relation networks by decomposing
the networks into smaller pieces and applying pattern ex-
pansion techniques (Kuramochi & Karypis, 2004; Yan et
al., 2005), or by performing frequent set mining with sub-
sequent connectivity checking (Koyuturk et al., 2004).
However, these approaches encounter scalability and in-
terpretability issues when being applied to massive bio-
logical networks: (1) In both approaches we tested, the
time and memory requirements increase exponentially
with increasing size of patterns and increasing number of
networks. The number of frequent dense subgraphs is ex-
plosive when there are very large frequent dense sub-
graphs, e.g., subgraphs with hundreds of edges. (2) A fre-
quent dense subgraph may not represent a tight association
among its nodes. Figure 2 shows a sample network data
set. Vertices e, c, f, h, d, and g form a frequent dense sub-
graph. However, biologically it is more interesting to di-
vide this subgraph into two modules, one comprising e, c,
f, and h; the other comprising h, d, g, and e since these two
modules have different occurrences throughout this graph
set (details see the figure caption). As one can see, fre-
quent dense subgraphs may not capture accurate informa-
tion for the discovery of biological modules.

In this paper, we address the aforementioned two issues
and develop a novel algorithm, called “CODENSE”, to

mine coherent dense subgraphs, a concept having better
interpretability than frequent graph. All edges in a coher-
ent subgraph should exhibit correlated occurrences in the
whole graph set. We also term this kind of subgraph “net-
work module”. According to the definition of coherent
dense subgraph, we are able to distinguish the two mod-
ules shown in Figure 2. Moreover, the design of
CODENSE can solve the scalability issue. Instead of min-
ing each biological network individually, CODENSE
compresses the networks into two meta-graphs and per-
forms clustering in these two graphs only. Thus,
CODENSE can handle any large number of networks. Us-
ing CODENSE, we can successfully identify high-quality
network modules within limited time and memory.

As a side product, CODENSE also provides a solution
to a graph mining problem—discovery of overlapping
graph clusters. It is known that under different conditions,
one gene may serve different roles and be involved in dif-
ferent functional groups (Gasch & Eisen, 2002); thus iden-
tifying overlapping clusters is important in biological ap-
plications. However, most graph clustering algorithms fol-
low the methodology of graph partitioning (Spirin &
Mirny, 2003; Van Dongen, 2000); they usually cannot
identify overlapping clusters. For example, in Figure 1b,
two cliques {a, b, c, d, e, f} and {e, f, h, i} share two
common vertices {e, f}. If a partition-based method first
identified the former clique, the latter clique will be
missed. Here, as a component of CODENSE, we designed

(1) (2) (3)

(4) (5) (6)

Summary
Graph

a

b

d

c

e

a

b

d

c

e
a

b

d

c

e
a

b

d

c

e

a

b

d

c

e
a

b

d

c

e

a

b

d

c

(a)

e

(b)

g

f

e

a

d

h

i

j

Figure 1. Given six graphs with the same vertex set but different edge sets, we construct a summary graph by adding these six graphs to-
gether and by deleting edges that occur less than three times in the graphs. The dense subgraph in the summary graph {a, b, c, d} actually
does not occur in any original graph. (b) The vertices e and f are shared by cliques {a, b, c, d, e, f} and {e, f, h, i}; they can be assigned to
both cliques only by approaches that are able to detect overlapping dense subgraphs (cliques are the densest subgraphs).

c

d
e

f

g

h a

b

c

d

e

g

h
a

b

c

d

e

g

h
f f a

b

c

d
e

f

g

h
a c

d

e

g

h
a

b

c

d

e

g

h
f f

bd d d d d

Figure 2. Shown are six graphs with the same vertex set but different edge sets. The bold subgraph {c-e, c-f, c-h, f-e, f-h, e-h, e-g, g-h, h-
d, g-d} occurs in three out of the six graphs (graphs 1,3, and 6). However, the vertices/edges of this subgraph may not be tightly associated
in their occurrence, because one large component, the subgraph {c-e, c-f, c-h, f-e, f-h, e-h} occurs in every network..

a

b

b

c

(1) (2) (3) (4) (5) (6)

Mining coherent dense subgraphs across massive biological networks for functional discovery

3

a novel algorithm, MODES (Mining Overlapping DEnse
Subgraphs), to identify overlapping graph clusters.

As an application example, we used CODENSE to iden-
tify frequent co-expression clusters across multiple mi-
croarray data sets. A microarray data set is modeled as an
unweighted and undirected network, where each gene is
represented by one node and two genes are connected with
an edge if they show high expression correlation. A
densely connected subgraph in these networks corresponds
to a tight co-expression cluster. However, several studies
pointed out that clusters derived from a single microarray
data set often include spurious links and may not be func-
tionally homogenous (Allocco et al., 2004; Clare & King,
2002) A recent study showed that genes co-expressed in
multiple datasets tend to have the same functions (Lee et
al., 2004). Here, applying our methods to 39 microarray
data sets of S. cerevisiae, we demonstrated that recurrent
expression clusters are very likely to be homogenous in
function and regulation, and can be used to perform large-
scale functional annotation of uncharacterized genes.

The remainder of this paper is organized as follows.
Section 2 gives the problem formulation. Our algorithms
of mining coherent dense subgraphs and overlapping dense
subgraphs are examined in Section 3 and Section 4, re-
spectively. We give a thorough comparison between our
approach and the others in Section 5. The experimental
study and biological applications are examined in Section
6. Section 7 concludes our study.

2 PROBLEM FORMULATION
A relation graph set consists of n undirected simple

graphs, D={Gi = (V,Ei)}, i = 1,…,n, Ei ⊆ V×V, where a
common vertex set V is shared by the graphs in the set. We
denote the vertex set of a graph G by V(G) and the edge
set by E(G). Let wi(u, v) be the weight of an edge ei(u, v) in
Gi. For an unweighted graph, wi(u, v) is equal to 1 if there
is an edge between u and v, otherwise 0. We choose to il-
lustrate the principles on unweighted and undirected
graphs in this paper, although our algorithm should be ex-
tendable to weighted and directed graphs.

Definition 1 (Support) Given a relation graph dataset,
D={G1,G2,…,Gn}, where Gi=(V,Ei), the support of a graph
g is the number of graphs (in D) where g is a subgraph,
written support(g). A graph is frequent if its support is
greater than a minimum support threshold.

Definition 2 (Summary Graph) Given a relation graph
dataset, D={G1,G2,…,Gn}, where Gi=(V, Ei), the summary
graph of D is an unweighted graph Ĝ=(V, Ê) where an
edge is present if it occurs in more than k graphs in D,
where k is a user-defined support threshold (see an exam-
ple in Figure 1a).

Definition 3 (Edge Support Vector) Given a relation
graph dataset, D={G1,G2,…,Gn}, where Gi=(V, Ei), the
support vector of an edge e, written w(e), is of length n
where n is the number of graphs. The i-th element of w(e)
corresponds to the weight of edge e in the i-th graph.

The support vector of the edge (a, b) for the six graphs
shown in Figure 1a is [1, 1, 1, 0, 0, 0], while the support
vector of the edge (b, c) is [0, 0, 0, 1, 1, 1]. As one can
see, edges (a, b) and (b, c) are not correlated in this data-
set, though both of them are frequent.

We use a special graph, termed second-order graph (de-
noted as S), to illustrate the co-occurrence of edges across
all graphs in a relation graph set D. Each edge in D is
transformed into a vertex in S, and two vertices u and v in
S will be connected if their corresponding edge support
vectors w(u) and w(v) in D show high similarity. Depend-
ing on whether or not the edges are weighted, the similar-
ity measure could be Euclidean distance or Pearson’s cor-
relation. Figure 3 (Step 3b) shows how to generate a sec-
ond-order graph from a set of edge support vectors. For
example, the Euclidean distance between the support vec-
tors of edges (c, e) and (c, i) is only 1, so we create an edge
between the vertices (c, e) and (c, i) in the second-order
graph S shown in Figure 3. In contrast to the second-order
graph, we term the original graphs Gi the first-order
graphs. The utilization of second-order graph discussed in
this paper is one type of second-order analysis, a concept
that has been proposed in our previous publication (Zhou
et al., 2005).

Definition 4 (Second-Order Graph) Given a relation
graph dataset, D={G1,G2,…,Gn}, where Gi = (V,Ei), the
second-order graph is an unweighted graph S=(V×V,Es),
where the vertex set of S is the edge set of G, and an edge
connects vertices u and v if the similarity between the cor-
responding edge support vectors w(u) and w(v) is greater
than a threshold.

In reality, if Gi is large and dense, S will be impractically
large. Therefore, to achieve efficiency, in this paper we
construct S each time only for a subgraph of the summary
graph Ĝ.

Definition 5 (Coherent Graph) Given a relation graph
dataset, D={G1,G2,…,Gn}, where Gi=(V,Ei), a subgraph
sub(Ĝ) is coherent if all the edges of sub(Ĝ) have support
higher than k and the second-order graph of sub(Ĝ) is
dense.

Hu et al.

4

Definition 6 (Graph Density) The density of a graph g,
written density(g), is 2m/(n(n-1)) where m is the number of
edges and n the number of vertices in g.

The problem of mining coherent dense subgraphs is
formulated as follows: given a relation graph dataset,
D={G1,G2,…,Gn}, discover subgraphs g that satisfy the
following two criteria simultaneously: (1) g is a densely
connected subgraph of the summary graph; and (2) g is a
coherent graph. As discussed in the Introduction section,
the coherent dense subgraphs have significant biological
interests.

3 CODENSE: MINING COHERENT DENSE
SUBGRAPHS

A scalable algorithm for mining coherent dense subgraphs
must perform well despite increasing number of graphs
and increasing size of patterns. In order to tackle this prob-
lem, we investigate the relation between a coherent dense
subgraph and the summary graph as well as its second-
order graph. We make the following two observations:

(1) If a frequent subgraph is dense, then it must be a dense
subgraph in the summary graph. However, the reverse
conclusion is not true. A dense subgraph in the sum-
mary graph may be neither frequent nor dense in the
original data set (see Figure 1a for an example).

(2) If a subgraph is coherent (its edges show high correla-
tion in their occurrences across a graph set), then its
2nd-order graph must be dense.

These two observations provide a clue to mining coherent
dense subgraphs with reasonable computational cost. Ac-
cording to Observation 1, each frequent dense subgraph is
a subgraph of a dense summary graph. We can start from
the summary graph and mine dense summary subgraphs
first. Once it is done, we can single out coherent subgraphs
from dense summary subgraphs by mining their corre-
sponding second-order graphs.

Our CODENSE algorithm consists of five steps, as out-
lined in Algorithm 1 and illustrated in Figure 3. In Steps 2,
4, and 5, a novel algorithm to discover overlapping dense
subgraphs, called “MODES,” is employed. We will de-
scribe the design of the MODES algorithm in Section 4.

In Step 1, CODENSE builds a summary graph by elimi-
nating infrequent edges.

In Step 2, CODENSE identifies dense subgraphs (possi-
bly overlapping) in the summary graph. While the dense
subgraphs in the summary graph may not be truly fre-
quently occurring in the original graphs, they do serve as a
superset of potential frequent dense subgraphs in the origi-
nal graphs. We start with this superset to refine the search
results.

f f

Figure 3. CODENSE: Discover Coherent Dense Subgraphs Across Multiple Graphs (dense subgraphs are marked bold).

edge support vectors

c
e

f
h

e
g

h

i Step 3b Step 4

a

b
d

e

g

h

i

c
f

a

b

c

d
e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b

c

d
e

f

g

h

i

a

b
d

e
g

h

i

c a

b

c

d
e

f

g

h

i

a

b

c

d
e

g

h

i

G1 G3G2

G6G5 G4

e-i

g-i

h-i

second-order graph S

g-h

f-g

Step1

Step 3a

summary graph Ĝ

e
g

h

i

c
f

dense summary
subgraph sub(Ĝ)

Step2

c-f

c-h

c-e

e-h

e-f

f-h

e-i

e-g g-i

h-i

coherent dense
subgraphs

dense subgraphs of the
second-order graph

sub(S)1 , sub(S)2

g-h

Step 5
e-g

 support ≥ 3

 Euclidean
distance 3<

e-h

e-f
c-i

c-f

c-h

c-e
……… … … … …

111 0 0 0 e-f

011 1 0 0 c-i

111 0 0 0 c-h

111 0 1 0 c-f

111 1 0 0 c-e

G6G5G4 G3 G2 G1 E

f-h

Mining coherent dense subgraphs across massive biological networks for functional discovery

5

In Step 3, CODENSE builds a second-order graph for
each dense summary subgraph.

In Step 4, CODENSE identifies dense subgraphs in the
second-order graph. The high connectivity among vertices
in the second-order graph indicates that the corresponding
edges show high similarity in their occurrences across the
n original graphs.

In Step 5, CODENSE discovers the real coherent dense
subgraphs. Although a dense subgraph sub(S) found in
Step 4 guarantees the co-occurrence of its edges across the
n relation graphs, those edges may no longer form a
densely connected graph in the original summary graph.
To eliminate such cases, we convert the vertices in sub(S)
back to edges and then apply the MODES algorithm to
identify dense subgraphs. The resulting subgraphs by con-
struction will satisfy the criteria for coherent dense sub-
graphs: (1) they are dense subgraphs and all of their edges
occur frequently; and (2) their edges are highly correlated
in their occurrences across the n relation graphs.

In comparison with previous frequent graph mining al-
gorithms, our algorithm may not show a significant advan-
tage when the number of relation graphs n is small. How-
ever, when n is large, CODENSE will achieve significant
time and memory efficiency since it works on two graphs
only: summary graph and second-order graph instead of
the n graphs. On the contrary, traditional frequent pattern
mining algorithms will not work well for high numbers of
large graphs due to the astronomical number of frequent
patterns.

In case the relation graphs do not contain a large amount
of edges, we can skip the step of clustering the summary
graph, and start from Step 3 by transforming all edges di-
rectly into the second-order graph with further steps un-
changed. The clustering of the summary graph serves the
purpose of restricting the second-order graph to a reason-
able size to avoid excessive computation.

4 MODES: MINING OVERLAPPING DENSE
SUBGRAPHS

The overlapping dense subgraph mining algorithm,
called MODES, is frequently used in CODENSE. In this
section, we present the details of its design. MODES is de-
veloped based on HCS (Mining Highly Connected Sub-
graphs) (Hartuv & Shamir, 2000), with two new features:
(1) MODES is more efficient in identifying dense sub-
graphs; and more importantly, (2) MODES can discover
overlapping subgraphs.

It is computationally intractable to enumerate all dense
subgraphs in a large graph. Usually, a large graph is first
clustered hierarchically and those dense clusters are sin-
gled out. HCS is this kind of algorithm. It recursively par-
titions the graph into two subgraphs until its minimum cut
is no less than half of its vertex set size.

Definition 7 (Minimum Cut) Given a graph G, an edge
cut is a set of edges Ec such that E(G)−Ec is disconnected.
A minimum cut is the smallest set in all edge cuts.

There are two issues remaining in HCS. First, HCS can
not identify overlapping dense subgraphs because of its na-
ture of graph-partitioning. Second, the above recursive par-
titioning process is time-consuming. The fastest determi-
nistic minimum cut algorithm in practice has time com-
plexity O(|V||E| + |V|2log|V|), where |V| and |E| are the
vertex set size and the edge set size of a given graph (Stoer
& Wagner, 1997). The minimum cut criterion adopted by
HCS favors cutting small sets of nodes from the graph.
When applying the algorithm repeatedly to a large graph
consisting of more than thousands of vertices, such unbal-
anced cuts could lead to unexpected high costs. As verified
by our experiments, we found HCS often cuts off one node
in each iteration, thus having time complexity O(|V|2|E|+
|V|3 log|V|).

To avoid the undesirable bias for partitioning out small
sets of vertices and to speed up the process, we apply the
normalized cut (Shi & Malik, 2000) instead of minimum
cut in the initial runs of the HCS algorithm. Normalized
cut is able to better balance the sizes of the partitions.
When the size of the partitions generated by normalized
cut is reasonably small, we proceed with the minimum cut
algorithm to identify dense subgraphs. We revert to the use
of the minimum cut in the later stage to better exploit its
power in clustering without severe effects on computa-
tional cost.

In order to identify overlapping dense subgraphs, we de-
signed the following procedure, as outlined in Algorithm 2
and illustrated in Figure 4: (1) We mine dense subgraphs
using the above modified HCS algorithm in a given graph
G. (2) Each discovered dense subgraph sub(G) is then
condensed into a single vertex v’; any vertex v that does
not belong to sub(G) will have an edge with v’ if v has

1: build a summary graph Ĝ across multiple relation
graphs G1,G2, …, Gn;

2: mine dense summary subgraphs sub(Ĝ) in Ĝ using
MODES;

 for each dense summary subgraph sub(Ĝ) do
3: •construct the second-order graph S;
4: •mine dense subgraphs sub(S) in S using

MODES;
5: •for each dense subgraph sub(S) do

*convert sub(S) into the first-order graph G;
*mine dense subgraphs sub(G) in G using
MODES;

*output sub(G);

ALGORITHM 1: CODENSE

Hu et al.

6

edge with a vertex in sub(G). (3) The condensed graph,
written G’, is then re-clustered using the above modified
HCS algorithm. (4) Once the clustering is done, if any
newly discovered dense subgraph sub(G’) contains con-
densed vertices, MODES restores the condensed vertices
back into subgraphs. To avoid the repetitive discovery of
already discovered dense subgraphs, MODES conducts the
following to focus on the vertices that have not been clus-
tered previously: for a restored subgraph C, MODES re-
moves the vertices v (v∈C) where v is connected to less
than p% of the vertices in V(sub(G’))-V(C). Since the re-
sulting subgraph sub(G’) may not be dense any more, in
order to extract the dense subgraphs, we perform Step 1
again on sub(G’) to identify its dense subgraphs. This pro-
cedure is repeated until no new dense graph is discovered.
To speed up the computation, we require that a new dense
subgraph should have less than 90% overlap with any ex-
isting dense subgraph.

The running time of computing normalized cut is deter-
mined by the extraction of the second smallest eigenvalue
of I-D-1/2WD-1/2, where W(i, j) is the weight of edge (i, j),
D(i, i) = ∑j W(i, j). Its complexity is O(nc), 1 ≤ c ≤ 3,
(O(n3) is the upper bound on solving the eigensystem of an
n-dimension square matrix) (Shi & Malik, 2000). Empiri-
cally, the value of c is around 1.5 when the graph is very
sparse (Shi & Malik, 2000). Assume a graph G = (V, E) is
clustered to k partitions V1, V2, ... Vk, where V1 U V2 U ... U
Vk = V. The total cost of clustering these k partitions is
O(|V1|c+|V2|c + … + |Vk|c) which is at most O(|V|c) given
c≥1. For hierarchical recursive clustering, the cost is
O(d|V|c), where d is the largest recursive steps. The value
of d is between O(log|V|) and O(|V|). Since normalized cut
prefers balanced partitions, in general, d is far away from
|V| but close to log |V|, which means our algorithm
MODES can run much faster than the worst case.

MODES may iterate several times in order to discover
overlapping dense subgraphs. Each iteration involves a hi-
erarchical clustering. Assume that the maximum number
of recursions for a given graph is r (Algorithm 2,

MODES). The running time of MODES is O(r|V|2.5) for a
sparse graph. In practice, we may restrict the recursion
depth.

Figure 4 illustrates a clustering example of mining over-
lapping dense subgraphs. The upper-left graph in the figure
is the original graph. Obviously, it has two dense con-
nected subgraphs. The readers can simulate our MODES
algorithm to detect these two subgraphs. As demonstrated
in this example, MODES is able to discover some dense
subgraphs that traditional clustering approaches cannot
find.

5 COMPARISON WITH OTHER METHODS
Our approach proposed so far simplifies the problem of

identifying coherent dense subgraphs across n graphs into
a problem of identifying dense subgraphs in two special
graphs: the summary graph and the second-order graph.
Here, we compare CODENSE with other methods and
highlight its major advantages.

By transforming all necessary information of the n
graphs into two graphs, CODENSE achieves significant
time and memory efficiency. Prior frequent graph mining
approaches, mostly based on graph pattern expansion
technique (Kuramochi & Karypis, 2004; Yan et al., 2005),
iteratively extend frequent patterns and check their sup-
port. However, these approaches are infeasible in discov-
ering large patterns. The problem of counting the number
of distinct maximal frequent subgraphs is #-P-complete,
thereby providing a strong implication that the problem of
mining maximal frequent subgraphs may be NP-hard
(Yang, 2004).

CODENSE can mine coherent subgraph patterns which
likely represent true network modules. As discussed in the
introduction section, frequent patterns may contain sub-

1: mine dense subgraphs, sub(G), in a given graph G using
the modified HCS algorithm in which normalized-cut
and min-cut are combined for recursive partitions;

2: for each dense subgraph sub(G) do
• condense sub(G) into a condensed vertex v’ in the

original graph;
denote the condensed graph by G’;

3: mine dense subgraphs sub(G’) from the condensed graph
G’ using the modified HCS algorithm again;

4: for each dense subgraph sub(G’) do
if sub(G’) contains any condensed vertex then

(a) restore each condensed component C in
sub(G’) ;
(b) remove vertices v, if v∈C and v is connected
to less than p%(|V(sub(G’))|-|V(C)|) vertices;
• repeat Steps 1-4 until no new dense sub-

graph is discovered in sub(G’);

ALGORITHM 2: MODES
j

h

g

f

e

a

b

c

d

h

i

j
f

e

a

b

c

d

v’

i

f

e

a

b

c

d

h

i

f

e

h

i

Step 1 Step 2

Step 3

Figure 4. MODES: Mine Overlapping Dense Sub-
graphs.

h
Step 4a

h

i
v’

j

g

G G’

Sub(G’)

Step 4b

Sub(G)

Mining coherent dense subgraphs across massive biological networks for functional discovery

7

components that differ significantly in their support, while
this is not an issue for coherent patterns.

CODENSE can mine both exact and approximate pat-
terns. We can control the similarity threshold of the edge
support vectors for edge construction in the second-order
graph as well as the density threshold for the subgraph dis-
covery in the second-order graph. The lower the two
thresholds, the higher the degree of approximation in the
output of CODENSE. Conversely, if the support vector
similarity threshold is set to be 100% and the 2nd-order
dense subgraph is required to form cliques, the identified
subgraphs shall occur exactly in the same graphs.

CODENSE can be extended to pattern mining on
weighted graphs since the core algorithms, normalized-cut
and minimum-cut based clustering, can be applied to both
weighted and unweighted graphs.

CODENSE can be further modified and extended to
identify more subtle patterns. For example, instead of clus-
tering edges with overall similar edge support vectors, one
may use bi-clustering algorithms (Cheng & Church., 2000)
to identify edges showing similar supports in a subset of
data sets. Efficient algorithm design for this purpose is cur-
rently under development.

6 EXPERIMENTAL STUDY
6.1 Graph modeling and parameter setting
In this study, we use the co-expression networks derived
from microarray data sets as a testing system for
CODENSE. We integrated 39 yeast microarray data sets,
each comprising the expression profiles of 6,661 genes in
at least 8 experiments, from Stanford Microarray Database
and the NCBI Gene Expression Omnibus (details of the
data set are available at http://zhoulab.usc.edu/CODEN-
SE/). From each microarray data set, we construct a rela-
tion network where two genes are connected if they show
strong similarity in their expression patterns measured by
Pearson’s correlation. We transform the Pearson’s corre-
lation (denoted as r) into another quan-
tity, 22 1)2(rrn −− , and model this quantity as a t-
distribution with n-2 degrees of freedom, where n is the
number of measurements used in the computation of the
Pearson’s correlation.

We construct a summary graph Ĝ, collecting edges with
support at least 6 over the 39 relation networks. MODES is
first applied to Ĝ to identify subgraphs with density ≥ d1.
For each identified subgraph, we then construct a 2nd-order
graph by transforming edges to vertices. Here, we build the
edge support vector (of length 39) by computing the Pear-
son’s correlation between the expression profiles of two
genes (two vertices) in each of the 39 data sets (note that
this is different from the binary edge support vectors illus-
trated in Figure 3). If the Pearson’s correlation between
two edges’ support vectors is significant at α=0.001 level,
we connect their transformed vertices with an edge in the

2nd-order graph. We again apply the MODES algorithm to
the 2nd-order graph to identify subgraphs with density ≥ d2.
Such identified 2nd-order graph is then transformed back to
the summary graph (vertices → edges), and MODES is
employed once more to identify subgraphs with density ≥
d3. In this experiment, we set the three density cutoffs d1 =
d2 = d3 = 0.4. However, they can be adjusted to accommo-
date users’ specific needs. For example, decreasing d1 and
d3 will favor sparse coherent patterns; and increasing d2
will strengthen the co-occurrence of edges across all net-
works in an identified pattern. In this study, we only focus
on the coherent subgraphs with at least four vertices.

6.2 Functional module discovery
We applied CODENSE to discover coherent clusters
across the 39 co-expression networks and compare the re-
sult with the dense subgraphs generated by MODES alone.

To quantify the comparison, we assess the clustering
quality by determining the percentage of functionally ho-
mogenous clusters among all identified clusters. We used
the Gene Ontology (GO) biological process annotation,
and consider a cluster to be functionally homogenous if (1)
the functional homogeneity modeled by the hypergeomet-
ric distribution (Wu et al., 2002) shall be significant at
α=0.01; and (2) at least 40% of its member genes with
known annotations belong to a specific GO functional
category. Using the GeneOntology biological process an-
notation, we define specific functions to be those associ-
ated with GeneOnology nodes that are more than 5 levels
below the root.

We found that CODENSE significantly increased the
percentage of functionally homogenous clusters from the
MODES results by filtering out larger amounts of noisy
genes or noisy clusters. MODES identified 366 clusters,
among which 151(42%) are functionally homogenous;
Starting with the 366 clusters, after the 2nd-order cluster-
ing, CODENSE identified 770 clusters that have at least 4
annotated genes. 76% of these clusters are functionally
homogenous. This shows a 34% increase of functionally
homogenous clusters compared to the MODES results.

The major performance improvement of CODENSE
over MODES is attributed to the power of the 2nd-order
clustering in eliminating dense summary subgraphs whose
edges do not show co-occurrence across all networks. For
example, MODES identified a five-gene clique in the
summary graph, {MSF1, PHB1, CBP4, NDI1, SCO2}.
However, the five genes come from diverse functional
categories such as “protein biosynthesis”, “replicative cell
aging”, and “mitochondrial electron transport”. In fact, al-
though all edges of this clique occur in at east 6 networks,
their co-occurrence is not significant across the 39 net-
works (see Figure 5a). The 2nd-order clustering can filter
out such pseudo-clusters, therefore provides more reliable
results.

Hu et al.

8

NDIl

PHB1

SCO2

CBP4

MSF1

(b)

FIGURE 5. (a) The edge occurrence profile of the five-gene clique in the summary graph. (b) Shown are the coherent dense sub-
graph containing 6 genes, all 5 genes except ASC1 are known to be involved in protein biosynthesis. ASC1 is therefore to be predicted
to have this function as well.

(a)

Moreover, we found instances in which the 2nd-order
clustering can remove the noisy genes in a functionally di-
verse cluster so that its subcluster(s) becomes functionally
homogenous. For example, in a cluster containing 54
genes that are associated with diverse functional catego-
ries, such as “organic acid metabolism”, “carboxylic acid
metabolism", and “amino acid and derivative metabolism”,
none of those categories is significantly over-presented in
this cluster. After the 2nd-order clustering, a coherent sub-
cluster emerges with 7 annotated genes, which is domi-
nated by the function “organic acid metabolism” (p-
value=2.18e-05).

6.3 Functional annotation
The large number of functionally homogenous clusters
identified by CODENSE provides a solid foundation for
functional annotation of uncharacterized genes. For those
clusters containing unknown genes, if the most dominating
GO functional category is significantly over-represented
(Bonferroni corrected hypergeometric P-value <0.01), we
annotated the unknown genes with that function. To assess
the prediction accuracy of our method, we employed a
“leave-one-out” approach by masking a known gene to be
unknown, and assign its function based on the remaining
known genes in the cluster. We consider a prediction to be
correct, if the lowest common ancestor of the predicted
and known functional categories of that gene is 5 levels
below the root in the GO hierarchy. That is, the predicted
and the known categories will merge into the same cate-
gory at least at the level 6 of the GO hierarchy. Note that
the annotated yeast genes encompass 160 functional cate-
gories at the level 6 of the GO hierarchy. We have as-
signed functions to 448 known genes, and achieved a pre-
diction accuracy of 50%.

By applying this approach to unknown genes, we made
functional prediction for 169 genes, covering a wide range
of functional categories from cellular protein metabolism,
protein biosynthesis, ribosome biogenesis, nucleobase, nu-
cleoside, nucleotide and nucleic acid metabolism, cellular

biosynthesis, etc. Figure 5b illustrates an example of our
predictions, in which the uncharacterized gene ASC1 is
predicted to be involved in “protein biosynthesis”, because
all of the remaining 5 genes in the same subgraph partici-
pate in that biological process. The comprehensive predic-
tion results are available at
http://zhoulab.usc.edu/CODENSE/. Numerous of our pre-
dictions are supported by experimental studies in the litera-
ture. For example, we predicted RRP15 to participate in
“ribosome biogenesis”. According to a personal communi-
cation between Fatica and SGD in 2004, this gene is in-
volved in pre-rRNA processing. We assigned the function
“protein biosynthesis” to YMR116C; and two studies
showed that it is involved in translation regulation
(Chantrel et al., 1998) and control (Gerbasi et al., 2004).
We predicted QRI5 to be involved in “protein biosynthe-
sis”; QRI5 has been shown to participate in a common
regulatory process together with MSS51 (Simon et al.,
1992) and the GO annotation of MSS51 is “positive regu-
lation of translation and protein biosynthesis”.

7. CONCLUSIONS

We developed a novel algorithm, CODENSE, to effi-
ciently mine coherent dense subgraphs across massive bio-
logical networks. In comparison with previous approaches,
CODENSE is scalable in the number and the size of the
networks to mine, adjustable in terms of exact or approxi-
mate coherent pattern mining, and extendable to weighted
and directed networks. It provides an efficient tool for the
identification of network modules and for the functional
discovery in the ever increasing biological networks. The
method can integrate heterogeneous network data (e.g.,
protein interaction network, genetic interaction network,
and co-expression networks) to reveal consistent biological
signals. The discovered network modules can be used in a
variety of biological applications, e.g., predict the func-

Mining coherent dense subgraphs across massive biological networks for functional discovery

9

tions of unknown genes, construct the transcription mod-
ules, and infer the potential protein assembly mechanisms.

ACKNOWLEDGEMENTS

We thank Min Xu for helpful discussions and Ming-Chih
J. Kao for proof-reading of the manuscript. The work of
Haiyan Hu is partially supported by the NIH grant
1P50CA112952. The work of Xianghong J. Zhou is sup-
ported by the USC faculty setup grant and the NIH grant
5R01GM067243. The work of Xifeng Yan and Jiawei Han
is supported by NSF IIS-02-09199.

REFERENCES
Allocco D.J., Kohane I.S. & Butte A.J. (2004):

Quantifying the relationship between co-
expression, co-regulation and gene function. BMC
Bioinformatics 5, 18.

Bader G.D. & Hogue C.W. (2003): An automated method
for finding molecular complexes in large protein
interaction networks. BMC Bioinformatics 4, 2.

Barabasi A.L. & Oltvai Z.N. (2004): Network biology:
understanding the cell's functional organization.
Nat Rev Genet 5, 101-13.

Chantrel Y., Gaisne M., Lions C. & Verdiere J. (1998):
The transcriptional regulator Hap1p (Cyp1p) is
essential for anaerobic or heme-deficient growth
of Saccharomyces cerevisiae: Genetic and
molecular characterization of an extragenic
suppressor that encodes a WD repeat protein.
Genetics 148, 559-69.

Cheng Y. & Church. G.M. (2000): Biclustering of
Expression Data. ISMB, 93-103.

Clare A. & King R.D. (2002): How well do we understand
the clusters found in microarray data? Silico
Biology 2, 511-22.

Gasch A.P. & Eisen M.B. (2002): Exploring the
conditional coregulation of yeast gene expression
through fuzzy k-means clustering. Genome Biol
3, RESEARCH0059.

Gerbasi V.R., Weaver C.M., Hill S., Friedman D.B. &
Link A.J. (2004): Yeast Asc1p and mammalian
RACK1 are functionally orthologous core 40S
ribosomal proteins that repress gene expression.
Mol Cell Biol 24, 8276-87.

Hartuv E. & Shamir R. (2000): A clustering algorithm
based on graph connectivity. Information
Processing Letters archive 76(4-6), 175 - 181.

Koyuturk M., Grama A. & Szpankowski W. (2004): An
efficient algorithm for detecting frequent
subgraphs in biological networks. Bioinformatics
20 Suppl 1, I200-I207.

Kuramochi M. & Karypis G. (2004): Finding Frequent
Patterns in a Large Sparse Graph. 2004 SIAM
Data Mining Conference.

Lee H.K., Hsu A.K., Sajdak J., Qin J. & Pavlidis P. (2004):
Coexpression analysis of human genes across
many microarray data sets. Genome Res 14, 1085-
94.

Sharan R. & Shamir R. (2000): CLICK: a clustering
algorithm with applications to gene expression
analysis. Proc Int Conf Intell Syst Mol Biol 8,
307-16.

Shi J. & Malik J. (2000): Normalized cuts and image
segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22, 888--905.

Simon M., Della Seta F., Sor F. & Faye G. (1992):
Analysis of the MSS51 region on chromosome
XII of Saccharomyces cerevisiae. Yeast 8, 559-
67.

Spirin V. & Mirny L.A. (2003): Protein complexes and
functional modules in molecular networks. Proc
Natl Acad Sci U S A 100, 12123-8.

Stoer M. & Wagner F. (1997): A simple min-cut
algorithm. Journal of the ACM 4, 585-591.

Van Dongen S. (2000): Graph Clustering by Flow
Simulation. PhD thesis,University of Utrecht.

Wu L.F., Hughes T.R., Davierwala A.P., Robinson M.D.,
Stoughton R. & Altschuler S.J. (2002): Large-
scale prediction of Saccharomyces cerevisiae
gene function using overlapping transcriptional
clusters. Nat Genet 31, 255-65.

Yan X., Zhou X. & Han J. (2005): Mining Closed
Relational Graphs with Connectivity Constraints.
Proceedings of the International Conference on
Data Engineering.

Yang G. (2004): The complexity of mining maximal
frequent itemsets and maximal frequent patterns.
Proceddings of Int. Conf. on Knowledge
Discovery and Data Mining, 344-353.

Zhou X.J., Kao M.C., Huang H., Wong A., Nunez-Iglesias
J., Primig M., Aparicio O.M., Finch C.E., Morgan
T.E. & Wong W.H. (2005): Functional annotation
and network reconstruction through cross-
platform integration of microarray data. Nat
Biotechnol 23, 238-43.

