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I. INTRODUCTION

Networks provide a natural and generic way for modeling
the interactions of objects, upon which various tasks can
be performed, such as node profiling, community detection
and link prediction [1], [2]. However, as real-world networks
are becoming more massive and complex each day, various
network mining algorithms need to be frequently developed
or improved to scale up, but such innovations are often non-
trivial, if not impossible. Moreover, the quality of networks
taken by these algorithms is often questionable: Do the net-
works include all necessary information, and is every piece of
information in the networks useful?

While existing network mining algorithms mostly focus on
more complex models for better capturing of the given network
proximities and structures, in this work, for the first time, we
draw attention to the fact that network mining tasks are often
specified on particular sets of objects of interest, which we call
queries, and advocate for query-specific network construction,
where the goal is to construct networks that are most relevant
to the queries.

Fig. 1. cube2net: A running example on DBLP.

Under the philosophy of the well-developed technology of
data cube for large-scale multi-dimensional data management,
massive complex real-world networks can be decomposed into
small substructures residing in fine-grained multi-dimensional
multi-granular cube cells w.r.t. their essential properties [3],
[4]. Assuming proper data cubes can be efficiently constructed
for particular networks automatically, we formulate the prob-
lem of of this work as follows.

Definition I.1. Cube-Based Query-Specific Network Construc-
tion. Given a massive network with objects organized in a data
cube and a query set of objects, find a set of cells, so that
objects in the cells are the most relevant to the query.

Figure 1 gives a toy example of query-specific network
construction. Consider the massive author network of DBLP1.
The task is to find pairs of close collaborators within a
particular research group. Only retaining the co-author links
within the group and ignoring all outside collaborations clearly
lead to significant information loss, while incorporating all co-
author links in the whole network is too costly and brings in
lots of useless data and noise. Based on the fact that the whole
network can be partitioned into fine-grained multi-dimensional
cube cells like <200X, KDD, Graph mining>, <201X, ACL,
Text mining>, we can look for a few subnetworks that are
the most relevant to the considered group (e.g., by looking at
their overlap with the group), and leverage the union of them
to serve as the query-specific network.

II. CUBE2NET

Data cube has been widely used to organize large-scale
multi-dimensional data. With well-designed cube structures, it
can largely boost various downstream data analytics, mining
and summarization tasks [3], [4]. In the data cube, each object
is assigned into a multi-dimensional cell which characterizes
its properties from multiple aspects.

In this work, we propose and design cube2net, a simple
and effective reinforcement learning algorithm over the data
cube structures, to efficiently find a near optimal solution
for the combinatorial problem of cube-based query-specific
network construction. In the algorithm, the state is represented
by our novelly designed distributed cell embeddings which
capture the semantic proximities among cells in multiple
dimensions, whereas the reward is designed to optimize the
overall relevance between the set of selected subnetworks and
the query. In this way, cube2net efficiently improves the utility
estimation of various related cells regarding relevance to the
query by exploring single cells, thus approaching the optimal
combination of relevant cells while avoiding the enumeration
of all possible combinations. Details of the framework will be
described in a full version of this work.

1http://dblp.uni-trier.de/



Net. Con.
Algorithm

Effectiveness (F1) Efficiency
DeepWalk LINE node2vec time size

NoCube 0.7034 0.5620 0.6195 2s 116
NoCube+ 0.6559 0.5263 0.5812 5s 3,853

NoCube++ 0.6794 0.5247 0.5874 62s 55,724
CubeRandom 0.5839 0.5087 0.5748 4s 2,512
CubeGreedy 0.7445 0.5988 0.6432 3,082s 1,464

cube2net 0.7628 0.6295 0.6913 296s 525

NoCube 0.4336 0.3044 0.3708 3s 4,236
NoCube+ 0.5207 0.3212 0.5113 84s 74,459

NoCube++ 0.5515 0.3261 0.4984 1,128s 434,941
CubeRandom 0.4018 0.2972 0.3416 4s 21,126
CubeGreedy 0.6125 0.3509 0.5768 4,194s 10,046

cube2net 0.6447 0.3718 0.6214 314s 6,842
TABLE I

PERFORMANCE OF COMPARED ALGORITHMS ON TWO SETS OF
QUERIES (SMALLER SET ON TOP AND LARGER SET ON BOTTOM).

III. EXPERIMENTAL EVALUATION

In this section, we provide primitive results towards the
effectiveness and efficiency of cube2net on author clustering
with the DBLP network dataset. It contains semi-structured
scientific publications, with their corresponding authors, years,
venues and textual contents. We construct a simple data cube
with dimensions year, venue and topic, where each cell holds
the corresponding authors and their coauthor links.

For evaluations, we use two sets of authors with ground-
truth labels published by [5]. The smaller set includes 116 au-
thors from 4 research groups, and the larger set includes 4,236
authors from 4 research areas. To provide a comprehensive
evaluation, we use three popular algorithms, i.e., DeepWalk
[6], LINE [7] and node2vec [8] to compute network embedding
before the standard K-means clustering and compute the F1
similarity against the ground-truth.

We compare with five baselines described as follows
• NoCube: Without a data cube, this method adds no addi-

tional object to the query network.
• NoCube+: Without a data cube, this method adds all

objects that are directly linked with the query network.
• NoCube++: Without a data cube, this method adds all

objects that are within two steps away from the query
network.

• CubeRandom: With a proper data cube, this method adds
objects in m random cells to the network.

• CubeGreedy: With the same data cube, this method
searches through all cells for m times, and greedily add
the objects in one cell at each time to optimize the same
quality function as cube2net.

1) Performance Comparison with Baselines: Table I shows
the performance of compared algorithms. As for effectiveness,
the network constructed by cube2net is able to best facilitate
network mining around the query. As can be observed, (1)
blindly adding neighbors into the network without a cube
organization or randomly adding cells can hurt the task per-
formance; (2) with a proper cube structure, greedily adding
cells w.r.t. our quality function can significantly boost the task
performance; however, (3) the performance of CubeGreedy is
still inferior to cube2net, which confirms our arguments that
the task of network construction is essentially a combinatorial
problem, which requires a globally optimal solution that can
be efficiently achieved only by reinforcement learning.

As for efficiency, (1) without cube organization, the network
can easily get too large, which requires significant network
construction time, and leads to long runtimes of network
mining algorithms; (2) the sizes of constructed networks are
much more controllable with a proper cube organization,
because we can easily set the number of cells to add; (3) even
with a proper cube, greedily searching the cube at each step
to select the proper cells is extremely time-consuming– on the
contrary, cube2net efficiently explores the cube structures with
reinforcement learning and is able to find the particular set of
cells to construct the most relevant subnetwork, which also
makes the downstream network mining more efficient.

Comparing the results on the two sets of query objects of
different sizes, we further find that, (1) as the query set of
authors becomes larger, blindly bringing in neighbors leads to
much larger networks, which can make subsequently network
mining algorithms slower. Such low efficiency is exactly what
we want to avoid by aiming at query-specific network con-
struction in this work; (2) when the query set becomes much
larger, the runtimes of the cube-based algorithms only increase
a little, since they still work on the same well organized cube
structure by evaluating the utility of cells rather than individual
nodes, indicating the power of the data cube organization.

IV. CONCLUSIONS

We demonstrate the power of cube2net as a universal
framework for improving network mining via query-specific
network construction. Since the current designs of both data
cube and reinforcement learning are primitive, many improve-
ments and applications can be explored in future works.
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