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Abstract—Linear Discriminant Analysis (LDA) has been a
popular method for extracting features which preserve class
separability. It has been widely used in many fields of information
processing, such as machine learning, data mining, information
retrieval, and pattern recognition. However, the computation of
LDA involves dense matrices eigen-decomposition which can be
computationally expensive both in time and memory. Specif-
ically, LDA has O(mnt + t3) time complexity and requires
O(mn + mt + nt) memory, where m is the number of samples,
n is the number of features andt = min(m, n). When both m
and n are large, it is infeasible to apply LDA. In this paper,
we propose a novel algorithm for discriminant analysis, called
Spectral Regression Discriminant Analysis (SRDA). By using
spectral graph analysis, SRDA casts discriminant analysis into a
regression framework which facilitates both efficient computation
and the use of regularization techniques. Our theoretical analysis
shows that SRDA can be computed withO(ms) time and O(ms)
memory, where s(≤ n) is the average number of non-zero
features in each sample. Extensive experimental results on four
real world data sets demonstrate the effectiveness and efficiency
of our algorithm.

I. I NTRODUCTION

Dimensionality reduction has been a key problem in many
fields of information processing, such as data mining, in-
formation retrieval, and pattern recognition. When data are
represented as points in a high-dimensional space, one is
often confronted with tasks like nearest neighbor search. Many
methods have been proposed to index the data for fast query
response, such asK-D tree,R tree,R* tree, etc [1]. However,
these methods can only operate with small dimensionality,
typically less than 100. The effectiveness and efficiency of
these methods drop exponentially as the dimensionality in-
creases, which is commonly referred to as the “curse of
dimensionality”. Thus, learnability necessitates dimensionality
reduction. Once the high-dimensional data is mapped into
lower-dimensional space, conventional indexing schemes can
then be applied.

One of the most popular dimensionality reduction algo-
rithms is Linear Discriminant Analysis (LDA) [2], [3]. LDA
searches for the project axes on which the data points of
different classes are far from each other while requiring data
points of the same class to be close to each other. The optimal
transformation (projection) of LDA can be computed by apply-
ing an eigen-decomposition on the scatter matrices of the given
training data. LDA has been widely used in many applications
such as text processing [4], face recognition [5]. However,

the scatter matrices are dense and the eigen-decomposition
could be very expensive in both time and memory for high
dimensional large scale data. Moreover, to get a stable solution
of LDA, the scatter matrices are required to be nonsingular
which is not true when the number of features is larger than
the number of samples. Some additional preprocessing steps
(e.g., PCA, SVD) are required to guarantee the non-singularity
of scatter matrices [5] which further increase the time and
memory cost. Therefor, it is almost infeasible to apply LDA
on large scale high dimensional data.

In this paper, we propose a novel algorithm for discriminant
analysis, calledSpectral Regression Discriminant Analysis
(SRDA). SRDA is essentially developed from LDA but has
significant computational advantages over LDA. Benefiting
from recent progresses on spectral graph analysis, we analyze
LDA from a graph embedding point of view which can be
traced back to [6]. We show how the LDA solution can be
obtained by solving a set of linear equations which links LDA
and classical regression. Our approach combines the spectral
graph analysis and regression to provide an efficient and effec-
tive approach for discriminant analysis. Specifically, LDAhas
O(mnt+ t3) time complexity and requiresO(mn+mt+nt)
memory, wherem is the number of samples,n is the number
of features andt = min(m,n). When bothm andn are large,
it is infeasible to apply LDA. On the other hand, SRDA can
be computed withO(ms) time andO(ms) memory, where
s(≤ n) is the average number of non-zero features in each
sample. It can be easily scaled to very large high dimensional
data sets.

The remainder of the paper is organized as follows. In
Section 2, we provide a review of LDA, which includes a
detailed computational analysis from a graph embedding point
of view. Section 3 introduces our proposedSpectral Regression
Discriminant Analysisalgorithm. The extensive experimental
results are presented in Section 4. Finally, we provide some
concluding remarks in Section 5.

II. A R EVIEW OF L INEAR DISCRIMINANT ANALYSIS

LDA seeks directions on which the data points of different
classes are far from each other while requiring data points of
the same class to be close to each other. Suppose we have a
set ofm samplesx1, x2, · · · , xm, belonging toc classes. The



objective function of LDA is as follows:

a∗ = arg max
a

aT Sba
aT Swa

, (1)

Sb =
c∑

k=1

mk(µµµ(k) −µµµ)(µµµ(k) −µµµ)T , (2)

Sw =

c∑

k=1

(
mk∑

i=1

(x(k)
i −µµµ(k))(x(k)

i −µµµ(k))T

)

, (3)

whereµµµ is the total sample mean vector,mk is the number
of samples in thek-th class,µµµ(k) is the average vector of the
k-th class, andx(k)

i is thei-th sample in thek-th class. We call
Sw the within-class scatter matrix andSb the between-class
scatter matrix.

Define St =
∑m

i=1(xi − µµµ)(xi − µµµ)T as the total scatter
matrix and we haveSt = Sb +Sw [3]. The objective function
of LDA in Eqn. (1) is equivalent to

a∗ = arg max
a

aT Sba
aT Sta

. (4)

The optimala’s are the eigenvectors corresponding to the non-
zero eigenvalue of the generalized eigen-problem:

Sba = λSta. (5)

Since the rank ofSb is bounded byc − 1, there are at most
c− 1 eigenvectors corresponding to non-zero eigenvalues [3].

A. Computational Analysis of LDA

In this section, we provide a computational analysis of LDA.
Our analysis is based on a graph embedding viewpoint of LDA
which can be traced back to [6]. We start from analyzing the
between-class scatter matrixSb.

Let x̄i = xi −µµµ denote the centered data point andX̄(k) =

[x̄(k)
1 , · · · , x̄(k)

mk
] denote the centered data matrix ofk-th class.

We have

Sb =

c∑

k=1

mk(µµµ(k) −µµµ)(µµµ(k) −µµµ)T

=

c∑

k=1

mk

(

1

mk

mk∑

i=1

(x(k)
i −µµµ)

)(

1

mk

mk∑

i=1

(x(k)
i −µµµ)

)T

=
c∑

k=1

1

mk

(
mk∑

i=1

x̄(k)
i

mk∑

i=1

(x̄(k)
i )T

)

=

c∑

k=1

X̄(k)W (k)(X̄(k))T

whereW (k) is a mk ×mk matrix with all the elements equal
to 1/mk.

Let X̄ = [X̄(1), · · · , X̄(c)] which is the centered data matrix
and define am × m matrix W as:

W =








W (1) 0 · · · 0

0 W (2)
· · · 0

...
...

. . .
...

0 0 · · · W (c)








(6)

We have

Sb =

c∑

k=1

X̄(k)W (k)(X̄(k))T = X̄WX̄T . (7)

SinceSt = X̄X̄T , the generalized eigen-problem of LDA in
Eqn (5) can be rewritten as:

X̄WX̄T a = λX̄X̄T a. (8)

We have

rank(St) = rank(X̄X̄T ) ≤ rank(X̄) ≤ min(m − 1, n).

SinceSt is size ofn×n, in the case ofn > m, St is singular
and the eigen-problem of LDA can not be stably solved. With
the new formulation ofSb, it is clear that we can use SVD to
solve this singularity problem.

Supposerank(X̄) = r, the SVD decomposition of̄X is

X̄ = UΣV T (9)

whereΣ = diag(σ1, · · · , σr) and σ1 ≥ σ2 ≥ · · · ≥ σr > 0
are the singular values of̄X. U ∈ R

n×r ( V ∈ R
m×r) is

the left (right) singular vector matrix andUT U = V T V = I,
whereI is a identity matrix. We have

X̄WX̄T a = λX̄X̄T a

⇒UΣV T WV ΣUT a = λUΣΣUT a

⇒Σ−1UT UΣV T WV
(

ΣUT a
)

= λΣ−1UT UΣ
(

ΣUT a
)

⇒V T WV b = λb

whereb = ΣUT a. It is clear thatb’s are the eigenvectors of
matrix V T WV . After calculatingb’s, thea’s can be obtained
by

a = UΣ−1b (10)

SinceX̄ has zero mean, the SVD of̄X is exactly the same
as the PCA ofX̄, and therefore the same as the PCA of
X. Our analysis here justifies the rationale behind two-stage
PCA+LDA approach [5].

B. Computational Complexity of LDA

Now let us analyze the computational complexities of LDA.
Our computational analysis in previous subsection shows that
the LDA projective functions can be obtained through the
following three steps:

1) SVD decomposition ofX̄ to getU , V andΣ.
2) Computingb’s, the eigenvectors ofV T WV .
3) Computinga = UΣ−1b.

Since there are at mostc − 1 projective functions in LDA,
we do not need to compute all the eigenvectors ofV T WV .
The following trick can be used to save computational cost.
We denote thei-th row vector ofV aszi, which corresponds
to the data pointxi. Let z(k)

i denote the row vector ofV



which corresponds tox(k)
i . Defineννν(k) = 1

lk

∑lk
i=1 z(k)

i and
H = [

√
l1ννν

(1), · · · ,
√

lcννν
(c)] ∈ R

d×c. We have

V T WV =

c∑

k=1

1

lk

(
lk∑

i=1

z(k)
i

lk∑

i=1

(z(k)
i )T

)

=

c∑

k=1

lk ννν(k)(ννν(k))T

=HHT

(11)

It is easy to check that the left singular vectors ofX̄ (column
vectors ofU ) are the eigenvectors of̄XX̄T and the right singu-
lar vectors ofX̄ (column vectors ofV ) are the eigenvectors of
X̄T X̄ [7]. Moreover, ifU or V is given, then we can recover
the other via the formulaX̄V = UΣ and UT X̄ = ΣV T .
In fact, the most efficient SVD decomposition algorithm (i.e.
cross-product) applies this strategy [7]. Specifically, ifm ≥ n,
we compute the eigenvectors of̄XX̄T , which gives usU
and can be used to recoverV ; If m < n, we compute the
eigenvectors ofX̄T X̄, which gives usV and can be used to
recoverU . Since the matrixH is of size r × c, wherer is
the rank ofX and c is the number of classes. In most of
the cases,r is close tomin(m,n) which is far larger than
c. Thus, comparing to directly calculate the eigenvectors of
HHT , compute the eigenvectors ofHT H then recover the
eigenvectors ofHHT can achieve a significant saving.

We use the termflam [8], a compound operation consist-
ing of one addition and one multiplication, to measure the
operation counts. Whenm ≥ n, the calculation ofX̄X̄T

requires 1
2mn2 flam; Computing the eigenvectors of̄XX̄T

requires9
2n3 flam [7], [9]; RecoveringV from U requiresmn2

flam by assumingr is close tomin(m,n); Computing thec
eigenvectors ofHHT requires1

2nc2+ 9
2c3+nc2 flam; Finally,

calculatinga’s from b’s requiringn2c. Whenm < n, we have
the similar analysis. We conclude that the time complexity of
LDA measured by flam is

3

2
mnt +

9

2
t3 +

3

2
tc2 +

9

2
c3 + t2c

wheret = min(m,n). Consideringc ≪ t, the time complexity
of LDA can be written as32mnt + 9

2 t3 + O(t2).
For the memory requirement, we need to storeX̄, U , V

anda’s. All sum together is

mn + nt + mt + cn

It is clear that LDA has cubic-time complexity with respect
to min(m,n) and the memory requirement isO(mn). When
both m and n are large, it is not feasible to apply LDA. In
the next section, we will show how to solve this problem with
the new formulation ofSb.

III. SPECTRAL REGRESSIONDISCRIMINANT ANALYSIS

In order to solve the LDA eigen-problem in Eqn. (8)
efficiently, we use the following theorem:

Theorem 1:Let ȳ be the eigenvector of eigen-problem

W ȳ = λȳ (12)

with eigenvalueλ. If X̄T a = ȳ, thena is the eigenvector of
eigen-problem in Eqn. (8) with the same eigenvalueλ.

Proof: We haveW ȳ = λȳ. At the left side of Eqn. (8),
replaceX̄T a by ȳ, we have

X̄WX̄T a = X̄W ȳ = X̄λȳ = λX̄ ȳ = λX̄X̄T a

Thus,a is the eigenvector of eigen-problem Eqn. (12) with the
same eigenvalueλ.

Theorem 1 shows that instead of solving the eigen-problem
Eqn. (8), the LDA basis functions can be obtained through
two steps:

1) Solve the eigen-problem in Eqn. (12) to getȳ.
2) Find a which satisfiesX̄T a = ȳ. In reality, sucha may

not exist. A possible way is to finda which can best fit
the equation in the least squares sense:

a = arg min
a

m∑

i=1

(aT x̄i − ȳi)
2 (13)

whereȳi is the i-th element of̄y.

The advantages of this two-step approach are as follows:

1) We will show later how the eigen-problem in Eqn. (12)
is trivial and we can directly get those eigenvectorsȳ.

2) Comparing to all the other LDA extensions, there is no
dense matrix eigen-decomposition or SVD decomposi-
tion involved. The technique to solve the least squares
problem is already matured [9] and there exist many
efficient iterative algorithms (e.g., LSQR [10]) that can
handle very large scale least squares problems. Therefor,
the two-step approach can be easily scaled to large data
sets.

In the situation that the number of samples is smaller than
the number of features, the minimization problem (13) isill
posed. We may have infinite many solutions for the linear
equations system̄XT a = ȳ (the system is underdetermined).
The most popular way to solve this problem is to impose a
penalty on the norm ofa:

a = arg min
a

(
m∑

i=1

(
aT x̄i − ȳi

)2
+ α‖a‖2

)

(14)

This is so called regularization and is well studied in statistics.
The regularized least squares is also called ridge regression
[11]. The α ≥ 0 is a parameter to control the amounts of
shrinkage. Now we can see the third advantage of the two-
step approach:

3 Since the regression was used as a building block, the
regularization techniques can be easily incorporated and
produce more stable and meaningful solutions, especially
when there exist a large amount of features [11].

Now let us analyze the eigenvectors ofW which is defined
in Eqn. (6). TheW is block-diagonal, thus, its eigenvalues and
eigenvectors are the union of the eigenvalues and eigenvectors
of its blocks (the latter padded appropriately with zeros).It is
straightforward to show thatW (k) has eigenvectore(k) ∈ R

mk

associated with eigenvalue 1, wheree(k) = [1, 1, · · · , 1]T .



Also there is only one non-zero eigenvalue ofW (k) because
the rank ofW (k) is 1. Thus, there are exactlyc eigenvectors
of W with the same eigenvalue 1. These eigenvectors are

y
k

= [ 0, · · · , 0
︸ ︷︷ ︸
∑k−1

i=1
mi

, 1, · · · , 1
︸ ︷︷ ︸

mk

, 0, · · · , 0
︸ ︷︷ ︸
∑

c

i=k+1
mi

]T k = 1, · · · , c (15)

Since 1 is a repeated eigenvalue ofW , we could just pick
any otherc orthogonal vectors in the space spanned by{yk},
and define them to be ourc eigenvectors. Notice that, in order
to guarantee there exists a vectora which satisfies the linear
equations system̄XT a = y, y should be in the space spanned
by the row vectors ofX̄. Since X̄e = 0, the vector of all
onese is orthogonal to this space. On the other hand, we can
easily see thate is naturally in the space spanned by{yk} in
Eqn. (15). Therefor, we picke as our first eigenvector ofW
and use Gram-Schmidt process to orthogonalize the remaining
eigenvectors. The vectore can then be removed, which leaves
us exactlyc−1 eigenvectors ofW , we denote them as follows:

{ȳk}c−1
k=1, (ȳT

i e = 0, ȳT
i ȳj = 0, i 6= j) (16)

The two-step approach essentially combines the spectral
analysis of the graph matrixW and regression techniques.
Therefor, we named this new approach asSpectral Regres-
sion Discriminant Analysis(SRDA). In the following several
subsections, we will provide the theoretical and computational
analysis on SRDA and give the detailed algorithmic procedure.
It is important to note that our approach can be generalized
by constructing the graph matrixW in the unsupervised or
semi-supervised way. Please see [12], [13], [14], [15], [16]
for more details.

A. Theoretical Analysis

In the following discussions,̄y is one of the eigenvectors in
Eqn. (16).

The regularized least squares problem of SRDA in Eqn. (14)
can be rewritten in matrix form as:

a = arg min
a

((
X̄T a− ȳ

)T (
X̄T a− ȳ

)
+ αaT a

)

. (17)

Requiring the derivative of right side with respect toa vanish,
we get

(

X̄X̄T + αI
)

a = X̄ ȳ

⇒ a =
(

X̄X̄T + αI
)
−1

X̄ ȳ
(18)

When α > 0, this regularized solution will not satisfy
the linear equations system̄XT a = ȳ and a is also not
the eigenvector of the LDA eign-problem in Eqn. (8). It is
interesting and important to see the relationship between the
projective function of ordinary LDA and SRDA. Specifically,
we have the following theorem:

Theorem 2:If ȳ is in the space spanned by row vectors
of X̄, the corresponding projective functiona calculated in
SRDA will be the eigenvector of eigen-problem in Eqn. (8) as
α deceases to zero. Therefor,a will be one of the projective
function of LDA.

Proof: See Appendix A of our technical report [17].
When the number of features is larger than the number of

samples, the sample vectors are usually linearly independent,
i.e., rank(X) = m. In this case, we have a stronger conclusion
which is shown in the following corollary.

Corollary 3: If the sample vectors are linearly independent,
i.e., rank(X) = m, all thec−1 projective functions in SRDA
will be identical to those of LDA described in Section II-A as
α deceases to zero.

Proof: See Appendix B of our technical report [17].
It is easy to check that the values of thei-th and j-th

entries of any vectory in the space spanned by{yk} in Eqn.
(15) are the same as long asxi and xj belong to the same
class. Thus thei-th andj-th rows of Ȳ are the same, where
Ȳ = [ȳ1, · · · , ȳc−1]. Corollary (3) shows that when the sample
vectors are linearly independent, thec−1 projective functions
of LDA are exactly the solutions of thec− 1 linear equations
systemsX̄T ak = ȳk. Let A = [a1, · · · , ac−1] be the LDA
transformation matrix which embeds the data points into the
LDA subspace as:

AT X = AT (X̄ + µµµeT ) = Ȳ T + ATµµµeT .

The columns of matrix̄Y T +ATµµµeT are the embedding results
of samples in the LDA subspace. Thus, the data points with
the same label are corresponding to the same point in the LDA
subspace when the sample vectors are linearly independent.

These projective functions are optimal in the sense of
separating training samples with different labels. However,
they usually overfit the training set thus may not be able to
perform well for the test samples, thus the regularization is
necessary.

B. The Algorithmic Procedure

Notice that, we need first to calculate the centered data
matrix X̄ in the algorithm. In some applications (e.g., text
processing), the data matrix is sparse which can be fit into
the memory even with a large number of both samples and
features. However, the center data matrix is dense, thus may
not be able to be fit into the memory. Before we give the
detailed algorithmic procedure of SRDA, we present a trick
to avoid the center data matrix calculation first.

We have:

arg min
a

m∑

i=1

(aT x̄i − ȳi)
2

= arg min
a

m∑

i=1

(aT xi − aTµµµ − ȳi)
2

If we append a new element “1” to eachxi, the scalaraTµµµ
can be absorbed intoa and we have

arg min
a′

m∑

i=1

((a′)T x′i − ȳi)
2

where botha′ and x′i are (n + 1)-dimensional vectors. By
using this trick, we can avoid the computation of centered



data matrix which can save the memory a lot for sparse data
processing.

Given a set of data pointsx1, · · · , xm ∈ R
n which belong

to c classes. Letmk denote the number of samples in thek-th
class (

∑c

k=1 mk = m). The algorithmic procedure of SRDA
is as follows.

1) Responses generation: Let

yk = [ 0, · · · , 0
︸ ︷︷ ︸
∑

k−1

i=1
mi

, 1, · · · , 1
︸ ︷︷ ︸

mk

, 0, · · · , 0
︸ ︷︷ ︸
∑

c

i=k+1
mi

]T k = 1, · · · , c

andy0 = [1, 1, · · · , 1]T denotes a vector of all ones. Take
y0 as the first vector and use Gram-Schmidt process to
orthogonize{yk}. Sincey0 is in the subspace spanned
by {yk}, we will obtain c − 1 vectors

{ȳk}c−1
k=1, (ȳT

i y0 = 0, ȳT
i ȳj = 0, i 6= j)

2) Regularized least squares: Append a new element “1” to
eachxi which will be still denoted asxi for simplicity.
Find c − 1 vectors{ak}c−1

k=1 ∈ R
n+1, where ak is the

solution of regularized least squares problem:

ak = arg min
a

(
m∑

i=1

(aT xi − ȳk
i )2 + α‖a‖2

)

(19)

whereȳk
i is the i-th element of̄yk.

3) Embedding to c − 1 dimensional subspace: The c − 1
vectors{ak} are the basis vectors of SRDA. LetA =
[a1, · · · , ac−1] which is a(n + 1) × (c − 1) transforma-
tion matrix. The samples can be embedded intoc − 1
dimensional subspace by

x → z = AT

[
x
1

]

C. Computational Complexity Analysis

In this section, we provide a computational complexity
analysis of SRDA. Our analysis considers both time complex-
ity and memory cost. The termflam, a compound operation
consisting of one addition and one multiplication, is used for
presenting operation counts [8].

The computation of SRDA involves two steps: responses
generation and regularized least squares. The cost of the
first step is mainly the cost of Gram-Schmidt method, which
requires(mc2 − 1

3c3) flam andmc + c2 memory [8].
We have two ways to solve thec−1 regularized least squares

problems in Eqn. (19):

• Differentiate the residual sum of squares with respect to
components ofa and set the results to zero, which is
the textbook way to minimize a function. The result is a
linear system called thenormal equations[8], as shown
in Eqn. (18)

• Use iterative algorithm LSQR [10].

These two approaches have different complexity and we
provide the analysis below separately.

1) Solving Normal Equations:As shown in Eqn. (18), the
normal equations of regularized least squares problem in Eqn
(19) are

(XXT + αI)ak = X ȳk (20)

The calculation ofXXT requires 1
2mn2 flam and the cal-

culation of c − 1 X ȳk requirescmn flam. Since the matrix
XXT + αI is positive definite, it can be factored uniquely
in the form XXT + αI = RT R, where R is upper tri-
angular with positive diagonal elements. This is so called
Cholesky decomposition and it requires16n3 flam [8]. With
this Cholesky decomposition, thec − 1 linear equations can
be solved withincn2 flam [8]. Thus, the computational cost
of solving regularized least squares by normal equations is

1

2
mn2 + cmn +

1

6
n3 + cn2.

When n > m, we can further decrease the cost. In the
proof of Theorem 2, we used the concept of pseudo inverse
of a matrix [18], which is denoted as(·)+. We have [18]:

X+ = lim
α→0

(XT X + αI)−1XT = lim
α→0

X(XXT + αI)−1.

Thus, the normal equations in Eqn. (20) can be solve by
solving the following two linear equations system whenα
decreasing to zero:

(XT X + αI)ck = ȳk

ak = Xck

(21)

The cost of solvingc−1 linear equations system in Eqn. (21)
is

1

2
nm2 +

1

6
m3 + cm2 + cmn.

Finally, the time cost of SRDA (including the responses
generation step) by solving normal equations is:

mc2 − 1

3
c3 +

1

2
mnt + cmn +

1

6
t3 + ct2.

wheret = min(m,n). Consideringc ≪ t, this time complex-
ity can be written as12mnt + 1

6 t3 + O(t2) + O(mn).
We also need to storeX, XXT (or XT X), yk and the

solutions ak. Thus, the memory cost of SRDA by solving
normal equations is:

mn + t2 + mc + nc

2) Iterative Solution with LSQR:The LSQR is an iterative
algorithm designed to solve large scale sparse linear equations
and least squares problems [10]. In each iteration, LSQR needs
to compute two matrix-vector products in the form ofXp and
XT q. The remaining work load of LSQR in each iteration
is 3m + 5n flam [19]. Thus, the time cost of LSQR in each
iteration is2mn + 3m + 5n. If LSQR stops afterk iterations,
the total time cost isk(2mn + 3m + 5n). LSRQ converges
very fast [10]. In our experiments, 20 iterations are enough.
Since we need to solvec− 1 least squares problems, the time
cost of SRDA with LSQR is

k(c − 1)(2mn + 3m + 5n),



TABLE I
COMPUTATIONAL COMPLEXITY OF LDA AND SRDA

Algorithm operation counts (flam [8]) memory

LDA 3
2
mnt + 9

2
t3 mn + nt + mt

SRDA
Solving normal equations 1

2
mnt + 1

6
t3 mn + t2

Iterative solution with LSQR
dense 2kcmn mn
sparse 2kcms + 5kcn ms + (2 + c)n

m: the number of data samples n: the number of features
t: min(m, n) c: the number of classes
k: the number of iterations in LSQR
s: the average number of non-zero features for one sample

which can be simplified as2kcmn + O(m) + O(n).
Besides storingX, LSQR needsm + 2n memory [19]. We

need to store theak. Thus, the memory cost of SRDA with
LSQR is:

mn + m + 2n + cn.

which can be simplified asmn + O(m) + O(n).
When the data matrix is sparse, the above computational

cost can be further reduced. Suppose each sample has around
only s ≪ n non-zero features, the time cost of SRDA with
LSQR is 2kcsm + 5kcn + O(m) and the memory cost is
sm + (2 + c)n + O(m).

3) Summary:We summarize our complexity analysis re-
sults in Table I, together with the complexity results of LDA.
For simplicity, we only show the dominant part of the time
and memory costs. The main conclusions include:

• SRDA (by solving normal equations) is always faster than
LDA. It is easy to check that whenm = n, we get the
maximum speedup, which is 9.

• LDA has cubic-time complexity with respect to
min(m,n). When bothm and n are large, it is not
feasible to apply LDA. SRDA (iterative solution with
LSQR) has linear-time complexity with bothm andn. It
can be easily scaled to high dimensional large data sets.

• In many high dimensional data processing taskse.g.,
text processing, the data matrix is sparse. However, LDA
needs to calculate centered data matrixX̄ which is dense.
Moreover, the left and right singular matrices are also
dense. When bothm andn are large, the memory limit
will restricts the ordinary LDA algorithm to be applied.

• On the other hand, SRDA (iterative solution with LSQR)
can fully explore the sparseness of the data matrix and
gain significant computational saving on both time and
memory. SRDA can successfully applied as long as the
data matrixX can be fit into the memory.

• Even the data matrixX is too large to be fit into the
memory, SRDA can still be applied with some reasonable
disk I/O. This is because in each iteration of LSQR, we
only need to calculate two matrix-vector products in the
form of Xp andXT q, which can be easily implemented
with X andXT stored on the disk.

IV. EXPERIMENTAL RESULTS

In this section, we investigate the performance of our
proposed SRDA algorithm for classification. All of our ex-

TABLE II
STATISTICS OF THE DATA SETS

dataset size (m) dim (n) # of classes (c)
PIE 11560 1024 68

Isolet 6237 617 26
MNIST 4000 784 10

20Newsgroups 18941 26214 20

periments have been performed on a P4 3.20GHz Windows
XP machines with 2GB memory. For the purpose of repro-
ducibility, we provide our algorithms and data sets used in
these experiments at:

http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html

A. Datasets

Four datasets are used in our experimental study, including
face, handwritten digit, spoken letter and text databases.The
important statistics of these datasets are summarized below
(see also Table II):

• The CMU PIE face database1 contains 68 subjects with
41,368 face images as a whole. The face images were
captured under varying pose, illumination and expression.
We choose the five near frontal poses (C05, C07, C09,
C27, C29) and use all the images under different illumi-
nations and expressions, thus we get 170 images for each
individual. All the face images are manually aligned and
cropped. The cropped images are32 × 32 pixels, with
256 gray levels per pixel. The features (pixel values) are
then scaled to [0,1] (divided by 256). For each individual,
l(= 10, 20, 30, 40, 50, 60) images are randomly selected
for training and the rest are used for testing.

• The Isolet spoken letter recognition database2 contains
150 subjects who spoke the name of each letter of the
alphabet twice. The speakers are grouped into sets of
30 speakers each, and are referred to as isolet1 through
isolet5. For the purposes of this experiment, we chose
isolet 1&2 which contain 3120 examples (120 examples
per class) as the training set, and test on isolet 4&5
which contains 3117 examples (3 example is missing due
to the difficulties in recording). A random subset with
l(= 20, 30, 50, 70, 90, 110) examples per letter from the
isolet 1&2 were selected for training.

1http://www.ri.cmu.edu/projects/project418.html
2http://www.ics.uci.edu/∼mlearn/MLSummary.html



TABLE III
CLASSIFICATION ERROR RATES ONPIE (MEAN±STD-DEV%)

Train Size LDA RLDA SRDA IDR/QR
10×68 31.8±1.1 19.1±1.2 19.5±1.3 23.1±1.4
20×68 20.5±0.8 10.9±0.7 10.8±0.7 16.0±1.1
30×68 10.9±0.5 8.7±0.7 8.4±0.7 13.7±0.8
40×68 8.2±0.4 7.2±0.5 6.9±0.4 11.9±0.6
50×68 7.2±0.4 6.6±0.4 6.3±0.4 11.4±0.7
60×68 6.4±0.3 6.0±0.3 5.7±0.2 10.8±0.5

TABLE IV
COMPUTATIONAL TIME ON PIE (S)

Train Size LDA RLDA SRDA IDR/QR
10×68 4.291 4.725 0.235 0.126
20×68 7.626 7.728 0.685 0.244
30×68 7.887 7.918 0.903 0.359
40×68 8.130 8.178 1.126 0.488
50×68 8.377 8.414 1.336 0.527
60×68 8.639 8.654 1.573 0.675
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Fig. 1. Error rate and computational time as functions of numberof labeled
samples per class on PIE.

• The MNIST handwritten digit database3 has a training set
of 60,000 samples (denoted as set A), and a testing set of
10,000 samples (denoted as set B). In our experiment, we
take the first 2,000 samples from the set A as our training
set and the first 2,000 samples from the set B as our test
set. Each digit image is of size28 × 28 and there are
around 200 samples of each digit in both training and test
sets. A random subset withl(= 30, 50, 70, 100, 130, 170)
samples per digit from training set are selected for
training.

• The popular 20 Newsgroups4 is a data set collected
and originally used for document classification by Lang
[20]. The “bydate” version is used in our experiment.
The duplicates and newsgroup-identifying headers are
removed which leaves us 18,941 documents, evenly dis-
tributed across 20 classes. This corpus contains 26,214
distinct terms after stemming and stop word removal.
Each document is then represented as a term-frequency
vector and normalized to 1. A random subset withl(=
5%, 10%, 20%, 30%, 40%, 50%) samples per category are
selected for training and the rest are used for testing.

The first three data sets have relatively smaller numbers of
features and the data matrices are dense. The last data set has
a very large number of features and the data matrix is sparse.

3http://yann.lecun.com/exdb/mnist/
4http://people.csail.mit.edu/jrennie/20Newsgroups/

TABLE V
CLASSIFICATION ERROR RATES ONISOLET (MEAN±STD-DEV%)

Train Size LDA RLDA SRDA IDR/QR
20×26 54.1±1.5 9.4±0.4 9.5±0.5 11.4±0.5
30×26 27.7±1.0 8.3±0.6 8.4±0.7 10.2±0.7
50×26 11.4±0.6 7.5±0.3 7.5±0.3 9.3±0.4
70×26 8.9±0.4 7.0±0.3 7.1±0.3 8.9±0.3
90×26 7.8±0.3 6.7±0.2 6.8±0.2 8.5±0.3
110×26 7.2±0.2 6.5±0.1 6.6±0.2 8.3±0.2

TABLE VI
COMPUTATIONAL TIME ON ISOLET (S)

Train Size LDA RLDA SRDA IDR/QR
20×26 1.351 1.403 0.096 0.056
30×26 1.629 1.653 0.148 0.059
50×26 1.764 1.766 0.204 0.092
70×26 1.861 1.869 0.265 0.134
90×26 1.935 1.941 0.322 0.177
110×26 2.007 2.020 0.374 0.269
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Fig. 2. Error rate and computational time as functions of numberof labeled
samples per class on Isolet.

B. Compared algorithms

Four algorithms which are compared in our experiments are
listed below:

1) Linear Discriminant Analysis (LDA). Solving the singu-
larity problem by using SVD as analyzed in Section II-A.

2) Regularized LDA (RLDA) [21]. Solving the singularity
problem by adding some constant values to the diagonal
elements ofSw, asSw + αI, for someα > 0 and I is
an identity matrix.

3) Spectral Regression Discriminant Analysis (SRDA), our
approach proposed in this paper.

4) IDR/QR [22], a LDA variation in which QR decomposi-
tion is applied rather than SVD. Thus, IDR/QR is very
efficient.

We compute the closed form solution of SRDA (by solving
normal equations) for the first three data sets and use LSQR
[10] to get the iterative solution for 20Newsgroups. The
iteration number in LSQR is set to be 15. Notice that there is
a parameterα which controls smoothness of the estimator in
both RLDA and SRDA. We simply set the value ofα as 1,
and the effect of parameter selection will be discussed later.

C. Results

The classification error rate as well as the the running
time (second) of computing the projection functions for each
method on the four data sets are reported on the Table (III∼
X) respectively. These results are also showed in the Figure
(1 ∼ 4). For each givenl (the number of training samples per



TABLE VII
CLASSIFICATION ERROR RATES ONMNIST (MEAN±STD-DEV%)

Train Size LDA RLDA SRDA IDR/QR
30×10 48.1±1.5 23.4±1.4 23.6±1.4 26.8±1.6
50×10 73.3±2.2 21.5±1.2 21.9±1.2 26.1±1.7
70×10 62.1±7.3 20.4±0.9 20.8±0.8 24.9±1.1
100×10 43.1±3.3 19.5±0.5 19.7±0.5 24.7±0.7
130×10 45.5±9.7 18.8±0.5 19.0±0.6 24.2±0.9
170×10 38.4±8.0 18.1±0.3 18.5±0.5 24.0±0.6

TABLE VIII
COMPUTATIONAL TIME ON MNIST (S)

Train Size LDA RLDA SRDA IDR/QR
30×10 0.389 0.817 0.035 0.023
50×10 1.645 1.881 0.092 0.042
70×10 2.341 2.429 0.180 0.062
100×10 2.498 2.622 0.268 0.154
130×10 2.528 2.673 0.317 0.168
170×10 2.636 2.713 0.379 0.211
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Fig. 3. Error rate and computational time as functions of numberof labeled
samples per class on MNIST.

class), we average the results over 20 random splits and report
the mean as well as the standard deviation.

The main observations from the performance comparisons
include:

• Both LDA and RLDA need SVD decomposition of the
data matrix. They can be applied whenmin(m,n) is
small (the first three data sets). The 20Nesgroups has
a very large number of features (n = 26214). LDA
needs the memory to store the centered data matrix and
the left singular matrix, which are both dense and with
size of m × n. With the size of training sample (m)
increases, these matrices can not be fit into memory and
LDA thus can not be applied. The situation of RLDA
is even worse since it needs store a left singular matrix
with size ofn × n. The IDR/QR algorithm only need to
solve a QR decomposition of matrix with size ofn × c
and an Eigen-decomposition of matrix with sizec × c,
wherec is number of classes [22]. Thus, IDR/QR is very
efficient. However, it still needs to store the centered data
matrix which can not be fit into memory when bothm
and n are large (In the case of using more than 40%
samples in 20Newsgroups as training set). SRDA only
needs to solvec − 1 regularized least squares problems
which make it almost as efficient as IDR/QR. Moreover,
it can fully explore the sparseness of the data matrix and
gain significant computational saving on both time and
memory.

• The LDA seeks the projective functions which are opti-

TABLE IX
CLASSIFICATION ERROR RATES ON20NEWSGROUPS(MEAN±STD-DEV%)

Train Size LDA∗ RLDA∗ SRDA IDR/QR∗

5% 28.0±0.6 − 27.3±0.5 33.0±0.9
10% 22.7±0.6 − 21.3±0.5 29.0±0.4
20% − − 16.0±0.3 25.9±0.4
30% − − 13.8±0.2 25.2±0.4
40% − − 12.4±0.2 −

50% − − 11.4±0.2 −

TABLE X
COMPUTATIONAL TIME ON 20NEWSGROUPS(S)

Train Size LDA∗ RLDA∗ SRDA IDR/QR∗

5% 61.84 − 16.47 5.705
10% 224.9 − 19.23 11.77
20% − − 22.93 20.18
30% − − 26.84 32.75
40% − − 31.24 −

50% − − 36.51 −
∗LDA (RLDA, IDR/QR) can not be applied as the size of
training set increases due to the memory limit.
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Fig. 4. Error rate and computational time as functions of numberof labeled
samples per class on 20Newsgroups.

mal on the training set. It does not consider the possible
overfitting in small sample size case. RLDA and SRDA
are regularized versions of LDA. The Tikhonov regular-
izer is used to control the model complexity. In all the test
cases, RLDA and SRDA are significantly better than other
LDA, which suggests that overfitting is a very crucial
problem which should be addressed in LDA model.

• Although IDR/QR is developed from LDA idea, there is
no theoretical relation between the optimization problem
solved by IDR/QR and that of LDA. In all the four data
sets, RLDA and SRDA significantly outperform IDR/QR.

• Considering both accuracy and efficiency, SRDA is the
best choice among four of the compared algorithms. It
provides an efficient and effective discriminant analysis
solution for large scale data sets.

D. Parameter selection for SRDA

The α ≥ 0 is an essential parameter in our SRDA algo-
rithm which controls the smoothness of the estimator. We
empirically set it to be 1 in the previous experiments. In this
subsection, we try to examine the impact of parameterα on
the performance of SRDA.

Figure (5) shows the performance of SRDA as a function
of the parameterα. For convenience, the X-axis is plotted as
α/(1 + α) which is strictly in the interval[0, 1]. It is easy to
see that SRDA can achieve significantly better performance
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Fig. 5. Model selection of SRDA. The curve shows the test error of SRDA with respect toα/(1 + α). The other two lines show the test error of LDA and
IDR/QR. It is clear that SRDA can achieve significantly better performance than LDA and IDR/QR over a large range ofα.

than LDA and IDR/QR over a large range ofα. Thus, the
parameter selection is not a very crucial problem in SRDA
algorithm.

V. CONCLUSIONS

In this paper, we propose a novel algorithm for discriminant
analysis, calledSpectral Regression Discriminant Analysis
(SRDA). Our algorithm is developed from a graph embedding
viewpoint of LDA problem. It combines the spectral graph
analysis and regression to provide an efficient and effective
approach for discriminant analysis. Specifically, SRDA only
needs to solve a set of regularized least squares problems
and there is no eigenvector computation involved, which is
a huge save of both time and memory. To the best of our
knowledge, our proposed SRDA algorithm is the first one
which can handle very large scale high dimensional data for
discriminant analysis. Extensive experimental results show that
our method consistently outperforms the other state-of-the-art
LDA extensions considering both effectiveness and efficiency.
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