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Abstract—Linear Discriminant Analysis (LDA) has been a the scatter matrices are dense and the eigen-decomposition
popular method for extracting features which preserve class could be very expensive in both time and memory for high
separability. It has been widely used in many fields of information dimensional large scale data. Moreover, to get a stabléisnlu
processing, such as machine learning, data mining, information . ! .
retrieval, and pattern recognition. However, the computation of of LDA the scatter matrices are required to b? nonsingular
LDA involves dense matrices eigen-decomposition which can be Which is not true when the number of features is larger than
computationally expensive both in time and memory. Specif- the number of samples. Some additional preprocessing steps
ically, LDA has O(mnt + °) time complexity and requires (e.g, PCA, SVD) are required to guarantee the non-singularity
O(mn +mt + nt) memory, wherem is the number of samples, f scatter matrices [5] which further increase the time and

n is the number of features and¢ = min(m,n). When both m o . :
and n are large, it is infeasible to apply LDA. In this paper, MeMOry cost. Therefor, it is almost infeasible to apply LDA

we propose a novel algorithm for discriminant analysis, called ON large scale high dimensional data.
Spectral Regression Discriminant Analysis (SRDA). By using In this paper, we propose a novel algorithm for discriminant
spectral graph analysis, SRDA casts discriminant analysis into a gpglysis, calledSpectral Regression Discriminant Analysis
regression framework which facilitates both efficient computation (SRDA). SRDA is essentially developed from LDA but has
and the use of regularization techniques. Our theoretical analysis ‘7 " ~=""/" - "
shows that SRDA can be computed wittO(ms) time and O(ms) ~ Significant computational advantages over LDA. Benefiting
memory, where s(< n) is the average number of non-zero from recent progresses on spectral graph analysis, wezmnaly
features in each sample. Extensive experimental results on four LDA from a graph embedding point of view which can be
real world data sets demonstrate the effectiveness and efficiey  aced back to [6]. We show how the LDA solution can be
of our algorithm. obtained by solving a set of linear equations which links LDA
and classical regression. Our approach combines the apectr
graph analysis and regression to provide an efficient amd-eff
Dimensionality reduction has been a key problem in manye approach for discriminant analysis. Specifically, LBAs
fields of information processing, such as data mining, i (mnt +¢3) time complexity and require® (mn + mt + nt)
formation retrieval, and pattern recognition. When data afgemory, wheren is the number of samples, is the number
represented as points in a high-dimensional space, onepfSeatures and = min(m,n). When bothm andn are large,
often confronted with tasks like nearest neighbor sear@my it is infeasible to apply LDA. On the other hand, SRDA can
methods have been proposed to index the data for fast qupey computed withO(ms) time andO(ms) memory, where
response, such ds-D tree, R tree, R* tree, etc [1]. However, (< p) is the average number of non-zero features in each
these methods can only operate with small dimensionaligample. It can be easily scaled to very large high dimenkiona
typically less than 100. The effectiveness and efficiency ghkta sets.
these methods drop exponentially as the dimensionality in-The remainder of the paper is organized as follows. In

creases, which is commonly referred to as the “curse 8fction 2, we provide a review of LDA, which includes a
dimensionality”. Thus, learnability necessitates dimemality yetajled computational analysis from a graph embeddingtpoi
reduction. Once the high-dimensional data is mapped in§gyjew. Section 3 introduces our proposgpectral Regression

lower-dimensional space, conventional indexing scheraes Gyjscriminant Analysisalgorithm. The extensive experimental

then be applied. _ o . results are presented in Section 4. Finally, we provide some
One of the most popular dimensionality reduction angfoncIuding remarks in Section 5.

rithms is Linear Discriminant Analysis (LDA) [2], [3]. LDA

searches for the project axes on which the data points of

different classes are far from each other while requiringada 1l. A REVIEW OF LINEAR DISCRIMINANT ANALYSIS

points of the same class to be close to each other. The optimal

transformation (projection) of LDA can be computed by apply LDA seeks directions on which the data points of different
ing an eigen-decomposition on the scatter matrices of thengi classes are far from each other while requiring data poihts o
training data. LDA has been widely used in many applicatiortiie same class to be close to each other. Suppose we have a
such as text processing [4], face recognition [5]. Howeveset of m samplesxy, Xa, - - - , X, belonging toc classes. The

I. INTRODUCTION



objective function of LDA is as follows: We have

. al'S,a ‘- _ N
a' = arg;nax a5, 1) Sy =Y X®wk(xENT = XWwxT, @)
k=1
Sy = ka(u(’“) — ) (™ — )7, (2) sinceS, = X X7, the generalized eigen-problem of LDA in
k=1 Eqn (5) can be rewritten as:

C mp

Su=3 <Z<x§’“> — M) - u<’“>>T> . @ XWXTa=AXX"a (®)
k=1 =1

where  is the total sample mean vectorny, is the number Ve Nave

of samples in the:-th classu(*) is the average vector of the rank(S,) = mnk(XXT) < rank(X) < min(m — 1,n)

k-th class, ana*) is thei-th sample in thé:-th class. We call ' - - T

S, the within-class scatter matrix an}, the between-class Sinces, is size ofn x n, in the case of. > m, S, is singular

scatter matrix. and the eigen-problem of LDA can not be stably solved. With
Define S; = > 1 (x; — p)(x; — p)* as the total scatter the new formulation ofS;, it is clear that we can use SVD to

matrix and we havéi‘t = Sb + Sw [3] The objective function solve this Singu|arity pr0b|em_

of LDA in Eqn. (1) is equivalent to Supposerank(X) = r, the SVD decomposition ok is
a* — arg max a’sa @) X =Uxv? 9)
a arsSa
The optimala’s are the eigenvectors corresponding to the nomhere Y = diag(oq, - ,0.) andoy > o9 > -+ > 0, > 0
zero eigenvalue of the generalized eigen-problem: are the singular values ok. U € R™" ( V € R™*") is
Sya— AS,a. 5) the left (right) singular vector matrix and”’U = VIV = I,

where[ is a identity matrix. We have
Since the rank ofS, is bounded by — 1, there are at most I Cor
¢ — 1 eigenvectors corresponding to non-zero eigenvalues [3]. XWX a=AXX"a

T Ty T
A. Computational Analysis of LDA SURVIWVRU 2= AUXXU 2

In this section, we provide a computational analysis of LDA. =~ U USVIWV (EUTa> =S UTUS (ZUTa)

Our analysis is based on a graph embedding viewpoint of LDA_, Ty 1/p — b
which can be traced back to [6]. We start from analyzing the

between-class scatter matrd. _ whereb = $UTa. It is clear thatb’s are the eigenvectors of
LetX; = X; — u denote the centered data point aki®) = matrix VZW V. After calculatingb’s, the a’s can be obtained
[)’(gk), e ,)’g(ff,l] denote the centered data matrix/eth class. by
We have a=Ux"'b (10)
k k _ _
Sp = ka(l‘( S ) (™ - )" Since X has zero mean, the SVD df is exactly the same
k=1 , @ the PCA ofX, and therefore the same as the PCA of
c mp my . . . . .
1 k) 1 *) X. Our analysis here justifies the rationale behind two-stage
= my <m > - H)) (m > —n) PCA+LDA approach [5].
k=1 ki1 ki1
_ zc: 1 (% (k) i()_(('k))T> B. Computational Complexity of LDA
=1 "\ i=1 Now let us analyze the computational complexities of LDA.
‘ o () 1 (k) 5 (k)T Our computational analysis in previous subsection shoas th
:ZX WEHX™) the LDA projective functions can be obtained through the
k=1 following three steps:
whereW *) is amy, x m;, matrix with all the elements equal 1) SvD decomposition oft to getl/, V and 3.
to1/my. _ L ~2) Computingb’s, the eigenvectors oF 7 WV..
Let X = [X(M ... X (9] which is the centered data matrix 3) Computinga — US~b.

and define an matrix W as: . L . .
xm W Since there are at most— 1 projective functions in LDA,

w U 0 we do not need to compute all the eigenvectors/tiv V.
0o we . 0 The following trick can be used to save computational cost.
: : - : We denote the-th row vector of V' asz;, which corresponds

0 0o - W® to the data pointx;. Let zgk) denote the row vector oV



b 7%) and  with eigenvalue). If X7a =y, thena is the eigenvector of

=10

which corresponds ta!*). Definev® = =

H = [yIiwW, ... Iw] e Ri*c. We have eigen-problem in Egn. (8) with the same eigenvalue
, L L Proof: We haveWWy = \y. At the left side of Eqn. (8),
(& 1 c v —
VIWYV — Z 1 (Z ng) Z(Zz('k))T> replaceX* a by y, we have
7lk — T - vT A v 9 Y \o Vo o T
k=1 i=1 i=1 XWX 'a=XWy=X\y=AXy=XXX"a
C 11
=3 L vH@M)T ) Thus,a is the eigenvector of eigen-problem Eqn. (12) with the
k=1 same eigenvalua@. |
=HHT Theorem 1 shows that instead of solving the eigen-problem
i i _ Eqgn. (8), the LDA basis functions can be obtained through
It is easy to check that the left singular vectorsiof{column two steps:

vectors ofl) are the eigenvectors 6f X7 and the right singu-
lar vectors ofX (column vectors of’) are the eigenvectors of
XTX [7]. Moreover, if U or V is given, then we can recover
the other via the formulaXV = UX and UTX = XV7T.
In fact, the most efficient SVD decomposition algorithm .(i.e
cross-produgtapplies this strategy [7]. Specifically,if, > n, =, T a2

we compute the eigenvectors of X, which gives usU a= afg;mnz(a Xi = i) (13)
and can be used to recovér; If m < n, we compute the =1

eigenvectors ofX” X, which gives usV and can be used to wherey; is thei-th element ofy.

recoverU. Since the matrixt is of sizer x ¢, wherer is  The advantages of this two-step approach are as follows:

the rank of X and c is the number of classes. In most of 1y we will show later how the eigen-problem in Eqn. (12)

1) Solve the eigen-problem in Eqn. (12) to get

2) Find a which satisfiesX”a = y. In reality, sucha may
not exist. A possible way is to find which can best fit
the equation in the least squares sense:

the casesy is close tomin(m,n) which is far larger than is trivial and we can directly get those eigenvectprs
c. Thus, comparing to directly calculate the eigenvectors 0b) comparing to all the other LDA extensions, there is no
HH", compute the eigenvectors ¢f” H then recover the dense matrix eigen-decomposition or SVD decomposi-
eigenvectors of/ " can achieve a significant saving. tion involved. The technique to solve the least squares
We use the ternflam [8], a compound operation consist- problem is already matured [9] and there exist many
ing of.one addition and one multiplication, Fo measure the efficient iterative algorithmse(g, LSQR [10]) that can
operation counts. Whem > n, the calculation ofX X" handle very large scale least squares problems. Therefor,
requires ;mn? flam; Computing the eigenvectors of X the two-step approach can be easily scaled to large data
requiresin? flam [7], [9]; Recovering/ from U requiresmn? sets.

flam by assuming- is close tomin(m,n); Computing thec
eigenvectors off H” requiresinc?+ 5¢3+nc? flam; Finally,
calculatinga’s from b’s requiringn?c. Whenm < n, we have
the similar analysis. We conclude that the time complexfty
LDA measured by flam is

In the situation that the number of samples is smaller than
the number of features, the minimization problem (13)llis

osed We may have infinite many solutions for the linear

quations systenX”a = y (the system is underdetermined).
The most popular way to solve this problem is to impose a

3t n 9.8 n 3,02 n 9.3 s penalty on the norm o&:

2 2" T3 2 .
wheret = min(m, n). Considering: < t, the time complexity a = argmin (Z (a'x; — gi)Q + a||a||2> (14)
of LDA can be written asimnt + 5t° + O(t?). a i=1
For the memory requirement, we need to stdfe U, V' This is so called regularization and is well studied in stits.
anda's. All sum together is The regularized least squares is also called ridge regressi
mn 4+ nt +mt - en [11]. The o > 0 is a parameter to control the amounts of

shrinkage. Now we can see the third advantage of the two-
It is clear that LDA has cubic-time complexity with respecstep approach:
to min(m,n) and the memory requirement d3(mn). When 3 gince the regression was used as a building block, the
both m andn are large, it is not feasible to apply LDA. In reqylarization techniques can be easily incorporated and
the next section, we will show how to solve this problem with  hroduce more stable and meaningful solutions, especially
the new formulation ofS. when there exist a large amount of features [11].

[1l. SPECTRAL REGRESSIONDISCRIMINANT ANALYSIS Now let us analyze the eigenvectors1of which is defined

In order to solve the LDA eigen-problem in Eqgn. (83”. Ean. (2)' TheWt;]s bloc.:k-d|?gt]ﬁnal', thus, I'ts elgequlues an?
efficiently, we use the following theorem: eigenvectors are the union of the eigenvalues and eigargec

. - ; : f its blocks (the latter padded appropriately with zerdisis
Th 1L h f -prob 0

eorem 1:Lety be the eigenvector of eigen-problem straightforward to show tha¥’ %) has eigenvectag*) ¢ R™*
Wy = \y (12) associated with eigenvalue 1, wheeé) = [1,1,---,1]7,



Also there is only one non-zero eigenvalueldf*) because Proof: See Appendix A of our technical report [17]m

the rank of iW(¥) is 1. Thus, there are exactlyeigenvectors  When the number of features is larger than the number of
of W with the same eigenvalue 1. These eigenvectors are samples, the sample vectors are usually linearly indepgnde
i.e., rank(X) = m. In this case, we have a stronger conclusion

=[0,---,0,1,---,1, 0,---,0 |7 k=1,---, 15 T ; .
Vi [_,_« _— —— ] ¢ (19 which is shown in the following corollary.
Yigtmy ™ X mi Corollary 3: If the sample vectors are linearly independent,

Since 1 is a repeated eigenvalue 16f, we could just pick i-€.rank(X) =m, allthec—1 projective functions in SRDA
any otherc orthogonal vectors in the space spanned{{y}, will be identical to those of LDA described in Section II-A as
and define them to be oureigenvectors. Notice that, in order® deceases to zero.

to guarantee there exists a vectowhich satisfies the linear Proof: See Appendix B of our technical report [17]m
equations systenX 7a =y, y should be in the space spanned It is easy to check that the values of tli¢h and j-th
by the row vectors ofX. Since Xe = 0, the vector of all €ntries of any vectoy in the space spanned Hy, } in Eqn.
onese is orthogonal to this space. On the other hand, we cé#p) are the same as long as and x; belong to the same
easily see thae is naturally in the space spanned by, } in class. Thus theé-th andj-th rows ofY are the same, where
Eqn. (15). Therefor, we pick as our first eigenvector af ¥ = [¥1, - ,¥._1]. Corollary (3) shows that when the sample
and use Gram-Schmidt process to orthogonalize the rengaink@ctors are linearly independent, the 1 projective functions
eigenvectors. The vectarcan then be removed, which leave®f LDA are exactly the solutions of the— 1 linear equations

us exactlyc—1 eigenvectors ofV, we denote them as follows: SystemsX”a; = y,. Let A = [a;,--- ,a.1] be the LDA
el o o transformation matrix which embeds the data points into the
Vitiz1, (Vie=0, ¥; ¥, =0, i# ) (16) DA subspace as:
The two-step approach essentially combines the spectral ATX = AT(X + pel) = VT + AT pel .

analysis of the graph matrix and regression techniques.

Therefor, we named this new approach $ectral Regres- The columns of matrix’” +A” ue” are the embedding results
sion Discriminant Analysi§SRDA). In the following several of samples in the LDA subspace. Thus, the data points with
subsections, we will provide the theoretical and compoteti the same label are corresponding to the same point in the LDA
analysis on SRDA and give the detailed algorithmic proceduisubspace when the sample vectors are linearly independent.
It is important to note that our approach can be generalizedThese projective functions are optimal in the sense of
by constructing the graph matri¥/ in the unsupervised or separating training samples with different labels. Howeve
semi-supervised way. Please see [12], [13], [14], [15]] [16hey usually overfit the training set thus may not be able to
for more details. perform well for the test samples, thus the regularizat®n i

. . necessary.
A. Theoretical Analysis y

In the following discussiongy is one of the eigenvectors inB. The Algorithmic Procedure

Ean. (16). _ Notice that, we need first to calculate the centered data
The regularized least squares problem of SRDA in Eqn. (1fhatrix X in the algorithm. In some application®.¢, text
can be rewritten in matrix form as: processing), the data matrix is sparse which can be fit into

a = arg min ((XTa_y)T(XTa_y) _|_aaTa) . @) the memory even with a large number pf _both samples and
a features. However, the center data matrix is dense, thus may
Requiring the derivative of right side with respectaoanish, not be able to be fit into the memory. Before we give the

we get detailed algorithmic procedure of SRDA, we present a trick
o ~ to avoid the center data matrix calculation first.
(XXT+aI)a:Xy We have:
_ -1 _ (18) m
= a= (XXT+CVI> Xy argminZ(aT)_(i—yi)2
a

When o > 0, this regularized solution will not satisfy ';1
the linear equations systetf”’a = y and a is also not - argminZ(aTXi —alp—7;)?
the eigenvector of the LDA eign-problem in Eqgn. (8). It is a i

interesting and important to see the relationship betwaen t o T
projective function of ordinary LDA and SRDA. Specifically, T W€ append a new element "1” to eaef, the scalaa’ p
we have the following theorem: can be absorbed inta and we have

Theorem 2:1f y is in the space spanngd by row vegtors . minZ((a)T% )
of X, the corresponding projective functian calculated in & : i Y
SRDA will be the eigenvector of eigen-problem in Eqgn. (8) as
« deceases to zero. Therefarwill be one of the projective where botha’ and x; are (n + 1)-dimensional vectors. By
function of LDA. using this trick, we can avoid the computation of centered



data matrix which can save the memory a lot for sparse datal) Solving Normal EquationsAs shown in Eqgn. (18), the

processing. normal equations of regularized least squares problem m Eq
Given a set of data points;, - - - ,X,, € R™ which belong (19) are

to ¢ classes. Lein; denote the number of samples in theh (XXT + al)a, = Xy, (20)

class §";_, mi = m). The algorithmic procedure of SRDA

is as follows.

1) Responses generatianLet

The calculation ofX X” requires3mn? flam and the cal-
culation ofc — 1 Xy, requirescmn flam. Since the matrix
XXT + ol is positive definite, it can be factored uniquely
in the form XX7 + oI = RTR, where R is upper tri-
angular with positive diagonal elements. This is so called
YSholmg me Xy ma Cholesky decomposition and it requirés:® flam [8]. With
this Cholesky decomposition, the— 1 linear equations can

- ... T . . .
andy, = [1’.1’ 1" denotes a vector of aI_I ones. Takeoe solved withincn? flam [8]. Thus, the computational cost
Yy, as the first vector and use Gram-Schmidt process

? solving regularized least squares by normal equations is
orthogonize{y, }. Sincey, is in the subspace spannedS g reg d y g

by {y.}, we will obtainc — 1 vectors

ye=1[0--,0,1,---,1, 0,---,0 |7 k=1,---,c
—_—— —— N——

1 1

ian +cmn + 6713 + en?.

N —1 o 1 T . .

{Vitizr Yo =0, ¥;¥; =0, i #j) Whenn > m, we can further decrease the cost. In the
proof of Theorem 2, we used the concept of pseudo inverse

2) Regularized least squaresAppend a new element “1” to of a matrix [18], which is denoted as)*. We have [18]

eachx; which will be still denoted ax; for simplicity.
Find c — 1 vectors{a,};_} € R"*!, whereay, is the X+ = lim (X7 X + o) "' X7 = lim X(XXT + al)"".
solution of regularized least squares problem: a—0 o0

Thus, the normal equations in Egn. (20) can be solve by

( 3 ) (19) solving the following two linear equations system when

Ty _ k\2 2 !
z;(a Xi — ;)" + ollal] decreasing to zero:
i=

a;, = argmin
a

(XTX +al)c, =y,

whereg¥ is thei-th element ofy, . (21)
3) Embedding to ¢ — 1 dimensional subspaceThe ¢ — 1 a = XCy
vectors{a,} are the basis vectors of SRDA. Let = The cost of solving: — 1 linear equations system in Eqn. (21)
[&1, -+ ,8.-1] which is a(n + 1) x (¢ — 1) transforma- is
tion matrix. The samples can be embedded iate 1 lnm2 + 1m3 + em? + emn.
dimensional subspace by 2 6
Finally, the time cost of SRDA (including the responses
X 7= AT { >1( ] generation step) by solving normal equations is:

, 1, 1 1 )
C. Computational Complexity Analysis me = §C3 g mnt & emn 6t3 Het

In this section, we provide a computational complexitywheret = min(m,n). Consideringc < ¢, this time complex-
analysis of SRDA. Our analysis considers both time compleiy can be written as;mnt + ¢t* + O(t?) + O(mn).
ity and memory cost. The terflam a compound operation We also need to stor&, XX” (or X7 X), y, and the
consisting of one addition and one multiplication, is used fsolutionsa,. Thus, the memory cost of SRDA by solving
presenting operation counts [8]. normal equations is:

The computation of SRDA involves two steps: responses
generation and regularized least squares. The cost of the
first step is mainly the cost of Gram-Schmidt method, which 2) Iterative Solution with LSQRThe LSQR is an iterative

mn+t2+mc+nc

requires(mc? — %03) flam andmc + ¢ memory [8]. algorithm designed to solve large scale sparse linear ieqsat
We have two ways to solve the-1 regularized least squaresand least squares problems [10]. In each iteration, LSQBsee
problems in Eqn. (19): to compute two matrix-vector products in the form.%f and

T i . L

. Differentiate the residual sum of squares with respect to 0- The remaining work load of LSQR in each iteration
components ofa and set the results to zero, which idS 37 + 5n flam [19]. Thus, the time cost of LSQR in each
the textbook way to minimize a function. The result is 4€ration is2mn +3m + 5n. If LSQR stops aftet iterations,

linear system called theormal equationg8], as shown the total time cost igi(2mn + 3m + 5n). LSRQ converges
in Egn. (18) very fast [10]. In our experiments, 20 iterations are enough

« Use iterative algorithm LSQR [10]. Since we need to solve— 1 least squares problems, the time

. ) cost of SRDA with LSQR is
These two approaches have different complexity and we w QRI

provide the analysis below separately. k(c—1)(2mn + 3m + 5n),



TABLE |
COMPUTATIONAL COMPLEXITY OF LDA AND SRDA

Algorithm operation countsflam [8]) memory
LDA %mnt + %t‘q’ mn + nt + mt
Solving normal equations 1mnt + 113 mn + t2
SROA Iterative solution with LSQR dense 2kemn mn
sparse 2kcems + bken ms+ (2+c)n
m: the number of data samples n: the number of features
t: min(m, n) c: the number of classes
k: the number of iterations in LSQR
s: the average number of non-zero features for one sample
. . . TABLE Il
which can be simplified a8kcmn + O(m) + O(n). STATISTICS OF THE DATA SETS
Besides storingX, LSQR needsn + 2n memory [19]. W(_a dataset size gn) [ dim (n) | # of classesd)
need to store they,. Thus, the memory cost of SRDA with PIE 11560 1024 68
LSQR is: Isolet 6237 617 26
mn +m + 2n + cn. MNIST 4000 784 10
20Newsgroups|| 18941 26214 20

which can be simplified asin + O(m) + O(n).

When the data matrix is sparse, the above computational

cost can be further reduced. Suppose each sample has ardifijiinents have been performed on a P4 3.20GHz Windows

only s < n non-zero features, the time cost of SRDA wit
LSQR is 2kecsm + 5ken + O(m) and the memory cost is
sm+ (24 ¢)n+ O(m).

HP machines with 2GB memory. For the purpose of repro-
ducibility, we provide our algorithms and data sets used in
these experiments at:

3) Summary:We summarize our complexity analysis re- http://www.cs.uiuc.edu/homes/dengcai2/Data/data.htim
sults in Table I, together with the complexity results of LDA

For simplicity, we only show the dominant part of the tim
and memory costs. The main conclusions include:

éA. Datasets
Four datasets are used in our experimental study, including

SRDA (by solving normal equations) is always faster thai@ce, handwritten digit, spoken letter and text datababks.
LDA. It is easy to check that whem = n, we get the important statistics of these datasets are summarizedvbelo

maximum speedup, which is 9.
LDA has cubic-time complexity with respect to .
min(m,n). When bothm and n are large, it is not
feasible to apply LDA. SRDA (iterative solution with
LSQR) has linear-time complexity with both andn. It

can be easily scaled to high dimensional large data sets.
In many high dimensional data processing taskg,

text processing, the data matrix is sparse. However, LDA
needs to calculate centered data makixvhich is dense.
Moreover, the left and right singular matrices are also
dense. When botm andn are large, the memory limit
will restricts the ordinary LDA algorithm to be applied.

On the other hand, SRDA (iterative solution with LSQR)
can fully explore the sparseness of the data matrix and,
gain significant computational saving on both time and
memory. SRDA can successfully applied as long as the
data matrixX can be fit into the memaory.

Even the data matrixX is too large to be fit into the
memory, SRDA can still be applied with some reasonable
disk I/O. This is because in each iteration of LSQR, we
only need to calculate two matrix-vector products in the
form of Xp and X7 q, which can be easily implemented
with X and X stored on the disk.

IV. EXPERIMENTAL RESULTS

(see also Table II):

The CMU PIE face databaseontains 68 subjects with
41,368 face images as a whole. The face images were
captured under varying pose, illumination and expression.
We choose the five near frontal poses (C05, C07, C09,
C27, C29) and use all the images under different illumi-
nations and expressions, thus we get 170 images for each
individual. All the face images are manually aligned and
cropped. The cropped images &2 x 32 pixels, with

256 gray levels per pixel. The features (pixel values) are
then scaled to [0,1] (divided by 256). For each individual,
I(= 10,20, 30, 40,50, 60) images are randomly selected
for training and the rest are used for testing.

The Isolet spoken letter recognition datafasentains
150 subjects who spoke the name of each letter of the
alphabet twice. The speakers are grouped into sets of
30 speakers each, and are referred to as isoletl through
isolets. For the purposes of this experiment, we chose
isolet 1&2 which contain 3120 examples (120 examples
per class) as the training set, and test on isolet 4&5
which contains 3117 examples (3 example is missing due
to the difficulties in recording). A random subset with
I(= 20, 30,50, 70,90,110) examples per letter from the
isolet 1&2 were selected for training.

In this section, we investigate the performance of ourihtp:/ww.ri.cmu.edu/projects/projeeti8.html
proposed SRDA algorithm for classification. All of our ex- 2http:/iwww.ics.uci.edutmlearn/MLSummary.html



TABLE Il TABLE V

CLASSIFICATION ERROR RATES ONPIE (MEAN+STD-DEV%) CLASSIFICATION ERROR RATES ON SOLET (MEAN+STD-DEV%)
Train Size LDA RLDA SRDA IDR/QR Train Size LDA RLDA SRDA IDR/QR
10x68 31.8£1.1 | 19.14+1.2 | 19.5+1.3 | 23.1+1.4 20x 26 541415 | 9.4+0.4 | 9.5£0.5 | 11.4+0.5
20x 68 20.5£0.8 | 10.9+0.7 | 10.8+0.7 | 16.0+1.1 30x26 27.+1.0 | 8.3+0.6 | 8.4+0.7 | 10.2£0.7
30x 68 10.940.5 | 8.7+0.7 8.4+0.7 | 13./40.8 50x 26 11.4+0.6 | 7.5+0.3 | 7.5+0.3 | 9.3t0.4
40x68 8.2+0.4 7.2+£0.5 6.9£0.4 | 11.9£0.6 70x26 8.9£0.4 | 7.0+0.3 | 7.1+0.3 | 8.9+0.3
50x68 7.240.4 6.6+:0.4 6.3£0.4 | 11.4£0.7 90x 26 7.8£0.3 | 6.740.2 | 6.8+:0.2 | 8.5+0.3
60x68 6.4+0.3 6.0+0.3 5.7£0.2 | 10.8t0.5 110x26 7.240.2 | 6.5+0.1 | 6.6+:0.2 | 8.3+0.2
TABLE IV TABLE VI
COMPUTATIONAL TIME ON PIE (S) COMPUTATIONAL TIME ON |ISOLET(S)
Train Size|| LDA | RLDA | SRDA | IDR/QR Train Size|| LDA | RLDA | SRDA | IDR/QR
10x68 4291 | 4725 | 0.235 0.126 20x26 1.351| 1.403 | 0.096 0.056
20x 68 7.626 | 7.728 | 0.685 0.244 30x26 1.629 | 1.653 | 0.148 0.059
30x 68 7.887 | 7.918 | 0.903 0.359 50x26 1.764 | 1.766 | 0.204 0.092
40x 68 8.130| 8.178 | 1.126 0.488 70x26 1.861| 1.869 | 0.265 0.134
50x68 8.377| 8.414 | 1.336 0.527 90x 26 1.935| 1.941 | 0.322 0.177
60x 68 8.639| 8.654 | 1.573 0.675 110x26 2.007 | 2.020 | 0.374 0.269
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Fig. 1. Error rate and computational time as functions of nunalbésbeled Fig. 2. Error rate and computational time as functions of nunobéabeled
samples per class on PIE. samples per class on Isolet.

« The MNIST handwritten digit databaskas a training set B. Compared algorithms

of 60,000 samples (denoted as set A), and a testing set_oFOUf algorithms which are compared in our experiments are
10,000 samples (denoted as set B). In our experiment, figied below:

take the first 2,000 samples from the set A as our trainingl) Linear Discriminant Analysis (LDA). Solving the singu-
set and the first 2,000 samples from the set B as our test larity problem by using SVD as analyzed in Section II-A.
set. Each digit image is of siz88 x 28 and there are 2) Regularized LDA (RLDA) [21]. Solving the singularity
around 200 samples of each digit in both training and test problem by adding some constant values to the diagonal

sets. A random subset wifli= 30, 50, 70, 100, 130, 170) elements ofS,,, as S, + al, for somea > 0 and I is
samples per digit from training set are selected for an identity matrix.
training. 3) Spectral Regression Discriminant Analysis (SRDA), our

« The popular 20 Newsgroupsis a data set collected  approach proposed in this paper.
and originally used for document classification by Lang4) IDR/QR [22], a LDA variation in which QR decomposi-
[20]. The “bydate” version is used in our experiment.  tion is applied rather than SVD. Thus, IDR/QR is very
The duplicates and newsgroup-identifying headers are efficient.
removed which leaves us 18,941 documents, evenly di&e compute the closed form solution of SRDA (by solving
tributed across 20 classes. This corpus contains 26,2igrmal equations) for the first three data sets and use LSQR
distinct terms after stemming and stop word removdll0] to get the iterative solution for 20Newsgroups. The
Each document is then represented as a term-frequeiteyation number in LSQR is set to be 15. Notice that there is
vector and normalized to 1. A random subset wite- a parametery which controls smoothness of the estimator in
5%, 10%, 20%, 30%, 40%, 50%) samples per category areboth RLDA and SRDA. We simply set the value afas 1,
selected for training and the rest are used for testing. and the effect of parameter selection will be discussed. late

The first three data sets have relatively smaller numbers©f Results
features and the data matrices are dense. The last datasset hgne classification error rate as well as the the running

a very large number of features and the data matrix is spargg,e (second) of computing the projection functions forkeac
method on the four data sets are reported on the Table-(lll

3nttp:/fyann.lecun.com/exdb/mnist/ X) respectively. These results are also showed in the Figure
“http:/people.csail. mit.edu/jrennie/20Newsgroups/ (1 ~ 4). For each given (the number of training samples per



TABLE VIl TABLE IX

CLASSIFICATION ERROR RATES ONMINIST (MEAN+STD-DEV%) CLASSIFICATION ERROR RATES ON2ONEWSGROUPYMEAN=£STD-DEV%)
Train Size LDA RLDA SRDA IDR/QR Train Size LDA* RLDA* SRDA IDR/QR*
30x10 48.1+1.5 | 23.4£1.4 | 23.6:1.4 | 26.8+1.6 5% 28.0+0.6 — 27.3t0.5 | 33.0+:0.9
50x10 73.3:2.2 | 21.5+1.2 | 21.941.2 | 26.1+1.7 10% 22.7+0.6 — 21.3+0.5 | 29.0:0.4
70x10 62.1+7.3 | 20.4:0.9 | 20.8:0.8 | 24.9£1.1 20% — — 16.0:0.3 | 25.9+0.4
100x 10 43.1+3.3 | 19.5£0.5 | 19.40.5 | 24.4+0.7 30% — — 13.86£0.2 | 25.2:0.4
130x 10 455+9.7 | 18.8£0.5 | 19.0:0.6 | 24.2:0.9 40% — — 12.4£0.2 —
170x10 38.4+8.0 | 18.1+0.3 | 18.5+:0.5 | 24.0+0.6 50% — — 11.4+0.2 —
TABLE VI TABLE X
COMPUTATIONAL TIME ON MNIST (S) COMPUTATIONAL TIME ON 20NEWSGROUPY(S)

Train Size|| LDA | RLDA | SRDA | IDR/QR Train Size || LDA* | RLDA* | SRDA IDR/QR*
30x10 0.389 | 0.817 | 0.035 0.023 5% 61.84 — 16.47 5.705
50x10 1.645| 1.881 | 0.092 0.042 10% 224.9 — 19.23 11.77
70x10 2.341| 2.429 | 0.180 0.062 20% — — 22.93 20.18
100x 10 2.498 | 2.622 | 0.268 0.154 30% — — 26.84 32.75
130x 10 2528 | 2.673 | 0.317 0.168 40% — — 31.24 —
170x10 2.636 | 2.713 | 0.379 0.211 50% — 36.51 -

“LDA (RLDA, IDR/QR) can not be applied as the size of

3 .. . .
70 —&—LDA training set increases due to the memory limit.
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Fig. 3. Error rate and computational time as functions of nunabéabeled Training sample ratio Training sample ratio
samples per class on MNIST.

Fig. 4. Error rate and computational time as functions of nunabéabeled
class), we average the results over 20 random splits andtre58MPIes Per class on 20Newsgroups.
the mean as well as the standard deviation.

The main observations from the performance comparisons Mal on the training set. It does not consider the possible

include: overfitting in small sample size case. RLDA and SRDA
. Both LDA and RLDA need SVD decomposition of the are _regularized versions of LDA. The Tikhonov regular-
data matrix. They can be applied whenin(m, n) is izer is used to control the mod_el gc_)mplexny. In all the test
small (the first three data sets). The 20Nesgroups has Cases, RI,‘DA and SRDA are S|gnlflqantly better than ot.her

a very large number of features: (= 26214). LDA LDA, which suggests that overfitting is a very crucial

needs the memory to store the centered data matrix and problem which shquld be addressed in LD.A model. .
the left singular matrix, which are both dense and with * Although I,DR/QR IS developed from LI.DA. |de_a, there is
size of m x n. With the size of training sampler) no theoretical relation between the optimization problem
increases, these matrices can not be fit into memory and solved by IDR/QR and t.hat. 9f LDA. In all the four data
LDA thus can not be applied. The situation of RLDA sets, ,RL[,)A and SRDA significantly pgtperform IDR/.QR'
is even worse since it needs store a left singular matrix * Considering both accuracy and efficiency, SRDA is the

with size ofn x n. The IDR/QR algorithm only need to best choice among four of the compared algorithms. It
solve a QR decomposition of matrix with size ofx ¢ provides an efficient and effective discriminant analysis
and an Eigen-decomposition of matrix with sizex c, solution for large scale data sets.

wherec is number of classes [22]. Thus, IDR/QR is ver Parameter selection for SRDA
efficient. However, it still needs to store the centered data
matrix which can not be fit into memory when both The > 0 is an essential parameter in our SRDA algo-
and n are large (In the case of using more than 40%thm which controls the smoothness of the estimator. We
samples in 20Newsgroups as training set). SRDA ongmpirically set it to be 1 in the previous experiments. Irsthi
needs to solve: — 1 regularized least squares problemsubsection, we try to examine the impact of parametem
which make it almost as efficient as IDR/QR. Moreovethe performance of SRDA.

it can fully explore the sparseness of the data matrix andFigure (5) shows the performance of SRDA as a function
gain significant computational saving on both time andf the parametetr.. For convenience, the X-axis is plotted as
memory. a/(1 4+ «) which is strictly in the interval0, 1]. It is easy to

« The LDA seeks the projective functions which are optisee that SRDA can achieve significantly better performance
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Fig. 5. Model selection of SRDA. The curve shows the testresfdSRDA with respect tax/(1 + «). The other two lines show the test error of LDA and
IDR/QR. It is clear that SRDA can achieve significantly befterformance than LDA and IDR/QR over a large rangexof

than LDA and IDR/QR over a large range of Thus, the

parameter selection is not a very crucial problem in SRDA

algorithm.

V. CONCLUSIONS

In this paper, we propose a novel algorithm for discriminan
analysis, calledSpectral Regression Discriminant Analysis

approach for discriminant analysis. Specifically, SRDAyonl

needs to solve a set of regularized least squares probl
and there is no eigenvector computation involved, which

6]

f

(SRDA). Our algorithm is developed from a graph embeddingg]
viewpoint of LDA problem. It combines the spectral graph[9]
analysis and regression to provide an efficient and effectiyg

1S

a huge save of both time and memory. To the best of our

knowledge, our proposed SRDA algorithm is the first on?

which can handle very large scale high dimensional data for

discriminant analysis. Extensive experimental results\stinat
our method consistently outperforms the other state-efattt

LDA extensions considering both effectiveness and effiien
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