PGT: Measuring Mobility Relationship Using Personal, Global and Temporal Factors

Presented by - Himel Dev
Mobility Relationship

• Measuring the mobility relationship between two mobile users based on their interaction in real world
 o Given trajectories of two users, measure their relationship strength
• How often two persons meet and where and when
• Application: crime investigation, transportation scheduling, advertisement targeting, urban planning etc.
Problem Formulation

• Given a spatio-temporal dataset of n users and two input users i & j, determine the relationship between i & j, denoted by F_{ij}

• The relationship F_{ij} is a function of all the meeting events between users i & j, expressed as $F_{ij} = G(E_{ij})$

• $E_{ij} = \{ e_1, e_2, \ldots \}$ denote the sequence of meeting events between i & j, where each event e_k contains a location and time stamp

• A meeting event is formed when a pair of location records (loc_p^i, t_p^i) & (loc_q^j, t_q^j) corresponding to users i & j satisfy the following constraints, $\text{dist}(loc_p^i, loc_q^j) < \delta$ & $|t_p^i, t_q^j| < \tau$
• **Personal Factor:** The same location carries different meaning for different persons
 o Times square as a travel destination vs office neighborhood

• **Global Factor:** The popularity of a location to general public
 o Downtown in a city, football stadium are popular locations

• **Temporal Factor:** This factor considers the time gaps between consecutive meeting events
 o With increasing time window meetups become less coincidental
Personal Background Modeling

- Personal mobility background models the probability that a user visits a location
- Probability of user i to visit location loc can be expressed as

$$p(i, \text{loc}) = \frac{|\{(\text{loc}_k, t_k) \in S_i : \text{loc}_k \sim \text{loc}\}|}{|S_i|}$$

Hard constraints on equivalence test

To overcome hard constraints, PGT uses a density function
Global Background Modeling

• Global background captures location popularity inferred from all mobile users

• Probability of user i to visit location loc_k can be expressed as

$$p(i, loc_k) = |S_i(loc_k)| / \Sigma_i |S_i(loc_k)|$$
Mining Mobility Relationship

- Continuous meeting event -> a trip
- Sporadic meeting event -> strong rel.
Experiment: Compare with State of the Art
Experiment: Compare Various Factors
Thank You!