Chapter 7 : Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
Mining Diverse Patterns

- Mining Multiple-Level Associations
- Mining Multi-Dimensional Associations
- Mining Quantitative Associations
- Mining Negative Correlations
- Mining Compressed and Redundancy-Aware Patterns
Mining Multiple-Level Frequent Patterns

- Items often form hierarchies
 - Ex.: Dairyland 2% milk; Wonder wheat bread
- How to set min-support thresholds?
 - Uniform min-support across multiple levels (reasonable?)
 - Level-reduced min-support: Items at the lower level are expected to have lower support
- Efficient mining: *Shared* multi-level mining
 - Use the lowest min-support to pass down the set of candidates

Uniform support
- Level 1: min_sup = 5%
- Level 2: min_sup = 5%

Reduced support
- Level 1: min_sup = 5%
- Level 2: min_sup = 1%

- Uniform support levels:
 - Milk: [support = 10%]
 - 2% Milk: [support = 6%]
 - Skim Milk: [support = 2%]
Redundancy Filtering at Mining Multi-Level Associations

- Multi-level association mining may generate many redundant rules

- Redundancy filtering: Some rules may be redundant due to “ancestor” relationships between items

 - milk \Rightarrow wheat bread [support = 8%, confidence = 70%] (1)

 - 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%] (2)

 - Suppose the 2% milk sold is about ¼ of milk sold in gallons

 - (2) should be able to be “derived” from (1)

- A rule is *redundant* if its support is close to the “expected” value, according to its “ancestor” rule, and it has a similar confidence as its “ancestor”

 - Rule (1) is an ancestor of rule (2), which one to prune?
Customized Min-Supports for Different Kinds of Items

- We have used the same min-support threshold for all the items or item sets to be mined in each association mining.
- In reality, some items (e.g., diamond, watch, ...) are valuable but less frequent.
- It is necessary to have customized min-support settings for different kinds of items.
- One Method: Use group-based “individualized” min-support.
 - E.g., {diamond, watch}: 0.05%; {bread, milk}: 5%; ...
 - How to mine such rules efficiently?
 - Existing scalable mining algorithms can be easily extended to cover such cases.
Mining Multi-Dimensional Associations

- Single-dimensional rules (e.g., items are all in “product” dimension)
 - \(\text{buys}(X, \text{“milk”}) \implies \text{buys}(X, \text{“bread”}) \)

- Multi-dimensional rules (i.e., items in \(\geq 2 \) dimensions or predicates)
 - Inter-dimension association rules (*no repeated predicates*)
 - \(\text{age}(X, \text{“18-25”}) \land \text{occupation}(X, \text{“student”}) \implies \text{buys}(X, \text{“coke”}) \)
 - Hybrid-dimension association rules (*repeated predicates*)
 - \(\text{age}(X, \text{“18-25”}) \land \text{buys}(X, \text{“popcorn”}) \implies \text{buys}(X, \text{“coke”}) \)

- Attributes can be categorical or numerical
 - Categorical Attributes (e.g., profession, product: no ordering among values): Data cube for inter-dimension association
 - Quantitative Attributes: Numeric, implicit ordering among values—discretization, clustering, and gradient approaches
Mining Quantitative Associations

- Mining associations with numerical attributes
 - Ex.: Numerical attributes: age and salary

Methods

- Static discretization based on predefined concept hierarchies
 - Discretization on each dimension with hierarchy
 - age: {0-10, 10-20, ..., 90-100} → {young, mid-aged, old}

- Dynamic discretization based on data distribution

- Clustering: Distance-based association
 - First one-dimensional clustering, then association

- Deviation analysis:
 - Gender = female ⇒ Wage: mean=$7/hr (overall mean = $9)
Mining Extraordinary Phenomena in Quantitative Association Mining

- Mining extraordinary (i.e., interesting) phenomena
 - Ex.: Gender = female ⇒ Wage: mean=$7/hr (overall mean = $9)
 - LHS: a subset of the population
 - RHS: an extraordinary behavior of this subset
 - The rule is accepted only if a statistical test (e.g., Z-test) confirms the inference with high confidence
 - Subrule: Highlights the extraordinary behavior of a subset of the population of the super rule
 - Ex.: (Gender = female) ^ (South = yes) ⇒ mean wage = $6.3/hr
 - Rule condition can be categorical or numerical (quantitative rules)
 - Ex.: Education in [14-18] (yrs) ⇒ mean wage = $11.64/hr
 - Efficient methods have been developed for mining such extraordinary rules (e.g., Aumann and Lindell@KDD’99)
Rare Patterns vs. Negative Patterns

- Rare patterns
 - Very low support but interesting (e.g., buying Rolex watches)
 - How to mine them? Setting individualized, group-based min-support thresholds for different groups of items

- Negative patterns
 - Negatively correlated: Unlikely to happen together
 - Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford Fusion are likely negatively correlated patterns
 - How to define negative patterns?
Defining Negative Correlated Patterns

- A support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., $\text{sup}(A \cup B) << \text{sup}(A) \times \text{sup}(B)$
 - Then A and B are negatively correlated

- Is this a good definition for large transaction datasets?

- Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
 - When there are in total 200 transactions, we have $s(A \cup B) = 0.005$, $s(A) \times s(B) = 0.25$, $s(A \cup B) << s(A) \times s(B)$
 - But when there are 10^5 transactions, we have $s(A \cup B) = 1/10^5$, $s(A) \times s(B) = 1/10^3 \times 1/10^3$, $s(A \cup B) > s(A) \times s(B)$

- What is the problem?—Null transactions: The support-based definition is not null-invariant!
Defining Negative Correlation: Need Null-Invariance in Definition

- A good definition on negative correlation should take care of the null-invariance problem
- Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions
- A Kulczynski measure-based definition
 - If itemsets A and B are frequent but
 \[
 \frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)}/2 < \epsilon,
 \]
 where \(\epsilon \) is a negative pattern threshold, then A and B are negatively correlated
- For the same needle package problem:
 - No matter there are in total 200 or \(10^5 \) transactions
 - If \(\epsilon = 0.01 \), we have
 \[
 \frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)}/2 = (0.01 + 0.01)/2 < \epsilon
 \]
Mining Compressed Patterns

Why mining compressed patterns?
- Too many scattered patterns but not so meaningful

Pattern distance measure
\[
\text{Dist}(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}
\]

δ-clustering:
For each pattern \(P \), find all patterns which can be expressed by \(P \) and whose distance to \(P \) is within \(\delta \) (δ-cover)

Closed patterns
- \(P_1, P_2, P_3, P_4, P_5 \)
- Emphasizes too much on support
- There is no compression

Max-patterns
- \(P_3 \): information loss

Desired output (a good balance):
- \(P_2, P_3, P_4 \)

<table>
<thead>
<tr>
<th>Pat-ID</th>
<th>Item-Sets</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>{38,16,18,12}</td>
<td>205227</td>
</tr>
<tr>
<td>P2</td>
<td>{38,16,18,12,17}</td>
<td>205211</td>
</tr>
<tr>
<td>P3</td>
<td>{39,38,16,18,12,17}</td>
<td>101758</td>
</tr>
<tr>
<td>P4</td>
<td>{39,16,18,12,17}</td>
<td>161563</td>
</tr>
<tr>
<td>P5</td>
<td>{39,16,18,12}</td>
<td>161576</td>
</tr>
</tbody>
</table>
Desired patterns: high significance & low redundancy

Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set

Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06
Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
Sequential Pattern Mining

- Sequential Pattern and Sequential Pattern Mining
- GSP: Apriori-Based Sequential Pattern Mining
- SPADE: Sequential Pattern Mining in Vertical Data Format
- PrefixSpan: Sequential Pattern Mining by Pattern-Growth
- CloSpan: Mining Closed Sequential Patterns
Sequence Databases & Sequential Patterns

- Sequential pattern mining has broad applications
 - Customer shopping sequences
 - Purchase a laptop first, then a digital camera, and then a smartphone, within 6 months
 - Medical treatments, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, ...
 - Weblog click streams, calling patterns, ...
 - Software engineering: Program execution sequences, ...
 - Biological sequences: DNA, protein, ...
- Transaction DB, sequence DB vs. time-series DB
- Gapped vs. non-gapped sequential patterns
 - Shopping sequences, clicking streams vs. biological sequences
Sequential Pattern and Sequential Pattern Mining

- **Sequential pattern mining**: Given a set of sequences, find the complete set of *frequent subsequences* (i.e., satisfying the min_sup threshold)

A *sequence database*

<table>
<thead>
<tr>
<th>SID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><a(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>20</td>
<td><(ad)c(bc)(ae)></td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(df)cb></td>
</tr>
<tr>
<td>40</td>
<td><eg(af)cbc></td>
</tr>
</tbody>
</table>

A *sequence*: \(<(ef)(ab)(df)cb>\)

- An *element* may contain a set of *items* (also called *events*)
- Items within an element are unordered and we list them alphabetically

\(<a(bc)dc>\) is a *subsequence* of \(<a(abc)(ac)d(cf)>\)

- Given *support threshold* \(\text{min_sup} = 2\), \(<(ab)c>\) is a *sequential pattern*
Sequential Pattern Mining Algorithms

- Algorithm requirement: Efficient, scalable, finding complete set, incorporating various kinds of user-specific constraints

- The Apriori property still holds: If a subsequence s_1 is infrequent, none of s_1’s super-sequences can be frequent

- Representative algorithms
 - GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT’96
 - Vertical format-based mining: SPADE (Zaki@Machine Learning’00)
 - Pattern-growth methods: PrefixSpan (Pei, et al. @TKDE’04)
 - Mining closed sequential patterns: CloSpan (Yan, et al. @SDM’03)
 - Constraint-based sequential pattern mining (to be covered in the constraint mining section)
GSP: Apriori-Based Sequential Pattern Mining

- Initial candidates: All 8-singleton sequences
 - \(<a>, , <c>, <d>, <e>, <f>, <g>, <h>\)
- Scan DB once, count support for each candidate
- Generate length-2 candidate sequences

\[
\text{min}_\text{sup} = 2
\]

<table>
<thead>
<tr>
<th>Cand.</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<a>)</td>
<td>3</td>
</tr>
<tr>
<td>()</td>
<td>5</td>
</tr>
<tr>
<td>(<c>)</td>
<td>4</td>
</tr>
<tr>
<td>(<d>)</td>
<td>3</td>
</tr>
<tr>
<td>(<e>)</td>
<td>3</td>
</tr>
<tr>
<td>(<f>)</td>
<td>2</td>
</tr>
<tr>
<td>(<g>)</td>
<td>1</td>
</tr>
<tr>
<td>(<h>)</td>
<td>1</td>
</tr>
</tbody>
</table>

Scan DB once, count support for each candidate:

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<a>)</td>
<td>3</td>
</tr>
<tr>
<td>()</td>
<td>5</td>
</tr>
<tr>
<td>(<c>)</td>
<td>4</td>
</tr>
<tr>
<td>(<d>)</td>
<td>3</td>
</tr>
<tr>
<td>(<e>)</td>
<td>3</td>
</tr>
<tr>
<td>(<f>)</td>
<td>2</td>
</tr>
<tr>
<td>(<g>)</td>
<td>1</td>
</tr>
<tr>
<td>(<h>)</td>
<td>1</td>
</tr>
</tbody>
</table>

Without Apriori pruning:
(8 singletons) \(8 \times 8 + 8 \times 7 / 2 = 92\) length-2 candidates

With pruning, length-2 candidates: \(36 + 15 = 51\)

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT’96
GSP Mining and Pruning

5th scan: 1 cand. 1 length-5 seq. pat.
4th scan: 8 cand. 7 length-4 seq. pat.
3rd scan: 46 cand. 20 length-3 seq. pat. 20 cand. not in DB at all
2nd scan: 51 cand. 19 length-2 seq. pat. 10 cand. not in DB at all
1st scan: 8 cand. 6 length-1 seq. pat.

- Repeat (for each level (i.e., length-k))
- Scan DB to find length-k frequent sequences
- Generate length-(k+1) candidate sequences from length-k frequent sequences using Apriori
- set k = k+1
- Until no frequent sequence or no candidate can be found

Candidates cannot pass min_sup threshold
Candidates not in DB

<table>
<thead>
<tr>
<th>SID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><(bd)cb(ac)></td>
</tr>
<tr>
<td>20</td>
<td><(bf)(ce)b(fg)></td>
</tr>
<tr>
<td>30</td>
<td><(ah)(bf)abf></td>
</tr>
<tr>
<td>40</td>
<td><(be)(ce)d></td>
</tr>
<tr>
<td>50</td>
<td><a(bd)bcb(ade)></td>
</tr>
</tbody>
</table>

min_sup = 2
Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

- A sequence database is mapped to: <SID, EID>
- Grow the subsequences (patterns) one item at a time by Apriori candidate generation

<table>
<thead>
<tr>
<th>SID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><a(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>2</td>
<td><ad)c(bc)(ae)></td>
</tr>
<tr>
<td>3</td>
<td><(ef)(ab)(df)c></td>
</tr>
<tr>
<td>4</td>
<td><eg(af)cbc></td>
</tr>
</tbody>
</table>

Ref: SPADE (Sequential PAtrrn Discovery using Equivalent Class) [M. Zaki 2001]
PrefixSpan: A Pattern-Growth Approach

PrefixSpan Mining: Prefix Projections

Step 1: Find length-1 sequential patterns
- <a>, , <c>, <d>, <e>, <f>

Step 2: Divide search space and mine each projected DB
- <a>-projected DB,
- -projected DB,
- ...
- <f>-projected DB,

PrefixSpan (Prefix-projected Sequential pattern mining)
Pei, et al. @TKDE’04

Prefix and suffix

Given <a(abc)(ac)d(cf)>

Prefixes: <a>, <aa>, <a(ab)>, <a(abc)>, ...

Suffix: Prefixes-based projection
PrefixSpan: Mining Prefix-Projected DBs

<table>
<thead>
<tr>
<th>SID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><a(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>20</td>
<td><(ad)c(bc)(ae)></td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(df)cb></td>
</tr>
<tr>
<td>40</td>
<td><eg(af)cbc></td>
</tr>
</tbody>
</table>

- **Prefix <a>**
 - <a>-projected DB
 - <(abc)(ac)d(cf)>
 - <(_d)c(bc)(ae)>
 - <(_b)(df)cb>
 - <(_f)cbc>

- **Prefix <a>**
 - <aa>-projected DB
 - <af>-projected DB

- **Prefix **
 - -projected DB

- **Prefix <c>, ..., <f>**
 - <c>-projected DB
 - <d>-projected DB
 - <e>-projected DB
 - <f>-projected DB

Length-1 sequential patterns
- <a>, , <c>, <d>, <e>, <f>

Length-2 sequential patterns
- <aa>, <ab>, <(ab)>, <ac>, <ad>, <af>

min_sup = 2

Major strength of PrefixSpan:
- No candidate subseqs. to be generated
- Projected DBs keep shrinking
Implementation Consideration: Pseudo-Projection vs. Physical Projection

- Major cost of PrefixSpan: Constructing projected DBs
- Suffixes largely repeating in recursive projected DBs
- When DB can be held in main memory, use pseudo projection
 - No physically copying suffixes
 - Pointer to the sequence
 - Offset of the suffix
- But if it does not fit in memory
 - Physical projection
- Suggested approach:
 - Integration of physical and pseudo-projection
 - Swapping to pseudo-projection when the data fits in memory
CloSpan: Mining Closed Sequential Patterns

- A closed sequential pattern s: There exists no superpattern s' such that $s' \supset s$, and s' and s have the same support.

- Which ones are closed? $\langle abc \rangle$: 20, $\langle abcd \rangle$: 20, $\langle abcde \rangle$: 15

- Why directly mine closed sequential patterns?
 - Reduce # of (redundant) patterns
 - Attain the same expressive power

- Property P_1: If $s \supset s_1$, s is closed iff two project DBs have the same size.

- Explore Backward Subpattern and Backward Superpattern pruning to prune redundant search space.

- Greatly enhances efficiency (Yan, et al., SDM’03)
CloSpan: When Two Projected DBs Have the Same Size

- If \(s \supset s' \), \(s \) is closed iff two project DBs have the same size
- When two projected sequence DBs have the same size?
- Here is one example:

<table>
<thead>
<tr>
<th>ID</th>
<th>Sequence</th>
<th>(\text{min}_\text{sup} = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><afbcg></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><afgeb(ac)></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><(af)ea></td>
<td></td>
</tr>
</tbody>
</table>

Backward subpattern pruning

Backward superpattern pruning

Only need to keep size = 12 (including parentheses)
Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
Constraint-Based Pattern Mining

- Why Constraint-Based Mining?
- Different Kinds of Constraints: Different Pruning Strategies
- Constrained Mining with Pattern Anti-Monotonicity
- Constrained Mining with Pattern Monotonicity
- Constrained Mining with Data Anti-Monotonicity
- Constrained Mining with Succinct Constraints
- Constrained Mining with Convertible Constraints
- Handling Multiple Constraints
- Constraint-Based Sequential-Pattern Mining
Why Constraint-Based Mining?

- Finding **all** the patterns in a dataset **autonomously**?—unrealistic!
- Too many patterns but not necessarily user-interested!
- Pattern mining in practice: Often a user-guided, **interactive** process
 - User directs what to be mined using a **data mining query language** (or a graphical user interface), specifying various kinds of constraints
- What is constraint-based mining?
 - Mine together with user-provided constraints
- Why constraint-based mining?
 - User flexibility: User provides **constraints** on what to be mined
 - Optimization: System explores such constraints for mining efficiency
 - E.g., Push constraints deeply into the mining process
Various Kinds of User-Specified Constraints in Data Mining

- **Knowledge type constraint**—Specifying what kinds of knowledge to mine
 - Ex.: Classification, association, clustering, outlier finding, ...
- **Data constraint**—using SQL-like queries
 - Ex.: Find products sold together in NY stores this year
- **Dimension/level constraint**—similar to projection in relational database
 - Ex.: In relevance to region, price, brand, customer category
- **Interestingness constraint**—various kinds of thresholds
 - Ex.: Strong rules: min_sup \geq 0.02, min_conf \geq 0.6, min_correlation \geq 0.7
- **Rule (or pattern) constraint** —The focus of this study
 - Ex.: Small sales (price $<$ 10) triggers big sales (sum $>$ 200)
Pattern Space Pruning with Pattern Anti-Monotonicity

- A constraint c is **anti-monotone**
- If an itemset S violates constraint c, so does any of its superset
- That is, mining on itemset S can be terminated
- Ex. 1: c_1: $\text{sum}(S.\text{price}) \leq v$ is anti-monotone
- Ex. 2: c_2: range($S.\text{profit}$) ≤ 15 is anti-monotone
- Itemset ab violates c_2 (range(ab) = 40)
- So does every superset of ab
- Ex. 3. c_3: $\text{sum}(S.\text{Price}) \geq v$ is not anti-monotone
- Ex. 4. Is c_4: $\text{support}(S) \geq \sigma$ anti-monotone?
- Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

### TID	Transaction
10 | a, b, c, d, f, h
20 | b, c, d, f, g, h
30 | b, c, d, f, g
40 | a, c, e, f, g

### Item	Price	Profit
a	100	40
b	40	0
c	150	−20
d	35	−15
e	55	−30
f	45	−10
g	80	20
h	10	5

Note: item.price > 0
Profit can be negative
Pattern Monotonicity and Its Roles

- A constraint c is *monotone*: If an itemset S *satisfies* the constraint c, so does any of its superset.
- That is, we do not need to check c in subsequent mining.
- Ex. 1: c_1: $\text{sum}(S.\text{Price}) \geq v$ is monotone.
- Ex. 2: c_2: $\text{min}(S.\text{Price}) \leq v$ is monotone.
- Ex. 3: c_3: $\text{range}(S.\text{profit}) \geq 15$ is monotone.
 - Itemset ab satisfies c_3.
 - So does every superset of ab.

<table>
<thead>
<tr>
<th>TID</th>
<th>Transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>a, b, c, d, f, h</td>
</tr>
<tr>
<td>20</td>
<td>b, c, d, f, g, h</td>
</tr>
<tr>
<td>30</td>
<td>b, c, d, f, g</td>
</tr>
<tr>
<td>40</td>
<td>a, c, e, f, g</td>
</tr>
</tbody>
</table>

$\text{min_sup} = 2$

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>b</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>150</td>
<td>-20</td>
</tr>
<tr>
<td>d</td>
<td>35</td>
<td>-15</td>
</tr>
<tr>
<td>e</td>
<td>55</td>
<td>-30</td>
</tr>
<tr>
<td>f</td>
<td>45</td>
<td>-10</td>
</tr>
<tr>
<td>g</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>h</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: item.price > 0
Profit can be negative.
Data Space Pruning with Data Anti-Monotonicity

- A constraint \(c \) is *data anti-monotone*: In the mining process, if a data entry \(t \) cannot satisfy a pattern \(p \) under \(c \), \(t \) cannot satisfy \(p \)'s superset either.

- Data space pruning: Data entry \(t \) can be pruned.

- Ex. 1: \(c_1: \text{sum}(S.Profit) \geq v \) is data anti-monotone.
 - Let constraint \(c_1 \) be: \(\text{sum}(S.Profit) \geq 25 \)
 - \(T_{30}: \{b, c, d, f, g\} \) can be removed since none of their combinations can make an \(S \) whose sum of the profit is \(\geq 25 \).

- Ex. 2: \(c_2: \text{min}(S.Price) \leq v \) is data anti-monotone.
 - Consider \(v = 5 \) but every item in a transaction, say \(T_{50} \), has a price higher than 10.

- Ex. 3: \(c_3: \text{range}(S.Profit) > 25 \) is data anti-monotone.

 Note: item.price > 0, Profit can be negative.
Data Space Pruning Should Be Explored Recursively

- Example. \(c_3: \text{range}(S\text{.Profit}) > 25 \)
 - We check b’s projected database
 - But item “a” is infrequent (\(\text{sup} = 1 \))
 - After removing “a (40)” from \(T_{10} \)
 - \(T_{10} \) cannot satisfy \(c_3 \) any more
 - Since “b (0)” and “c (−20), d (−15), f (−10), h (5)”
 - By removing \(T_{10} \), we can also prune “h” in \(T_{20} \)

- Note: \(c_3 \) prunes \(T_{10} \) effectively only after “a” is pruned (by min-sup) in b’s projected DB
Succinctness: Pruning Both Data and Pattern Spaces

- Succinctness: If the constraint \(c \) can be enforced by directly manipulating the data

- Ex. 1: To find those patterns without item \(i \)
 - Remove \(i \) from DB and then mine (pattern space pruning)

- Ex. 2: To find those patterns containing item \(i \)
 - Mine only \(i \)-projected DB (data space pruning)

- Ex. 3: \(c_3: \min(S.Price) \leq v \) is succinct
 - Start with only items whose price \(\leq v \) and remove transactions with high-price items only (pattern + data space pruning)

- Ex. 4: \(c_4: \sum(S.Price) \geq v \) is not succinct
 - It cannot be determined beforehand since sum of the price of itemset \(S \) keeps increasing
Convertible Constraints: Ordering Data in Transactions

- Convert tough constraints into (anti-)monotone by proper ordering of items in transactions
- Examine \(c_1: \text{avg}(S.\text{profit}) > 20 \)
 - Order items in (profit) value-descending order
 - \(<a, g, f, b, h, d, c, e>\)
- An itemset \(ab \) violates \(c_1 \) (avg(ab) = 20)
 - So does \(ab^* \) (i.e., \(ab \)-projected DB)
- \(C_1 \): anti-monotone if patterns grow in the right order!

- Can item-reordering work for Apriori?
 - Level-wise candidate generation requires multi-way checking!
 - \(\text{avg}(agf) = 21.7 > 20 \), but \(\text{avg}(gf) = 12.5 < 20 \)
 - Apriori will not generate “agf” as a candidate

<table>
<thead>
<tr>
<th>TID</th>
<th>Transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>a, b, c, d, f, h</td>
</tr>
<tr>
<td>20</td>
<td>a, b, c, d, f, g, h</td>
</tr>
<tr>
<td>30</td>
<td>b, c, d, f, g</td>
</tr>
<tr>
<td>40</td>
<td>a, c, e, f, g</td>
</tr>
</tbody>
</table>

- \(\text{min_sup} = 2 \)

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>b</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>150</td>
<td>−20</td>
</tr>
<tr>
<td>d</td>
<td>35</td>
<td>−15</td>
</tr>
<tr>
<td>e</td>
<td>55</td>
<td>−30</td>
</tr>
<tr>
<td>f</td>
<td>45</td>
<td>−5</td>
</tr>
<tr>
<td>g</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>h</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
Different Kinds of Constraints Lead to Different Pruning Strategies

- In summary, constraints can be categorized as
 - Pattern space pruning constraints vs. data space pruning constraints

- Pattern space pruning constraints
 - Anti-monotonic: If constraint c is violated, its further mining can be terminated
 - Monotonic: If c is satisfied, no need to check c again
 - Succinct: If the constraint c can be enforced by directly manipulating the data
 - Convertible: c can be converted to monotonic or anti-monotonic if items can be properly ordered in processing

- Data space pruning constraints
 - Data succinct: Data space can be pruned at the initial pattern mining process
 - Data anti-monotonic: If a transaction t does not satisfy c, then t can be pruned to reduce data processing effort
How to Handle Multiple Constraints?

- It is beneficial to use multiple constraints in pattern mining
- But different constraints may require potentially conflicting item-ordering
 - If there exists conflict ordering between \(c_1 \) and \(c_2 \)
 - Try to sort data and enforce *one constraint* first (which one?)
 - Then enforce the other constraint when mining the projected databases
- Ex. \(c_1 \): \(\text{avg}(S.\text{profit}) > 20 \), and \(c_2 \): \(\text{avg}(S.\text{price}) < 50 \)
 - Assume \(c_1 \) has more pruning power
 - Sort in profit descending order and use \(c_1 \) first
 - For each project DB, sort trans. in price ascending order and use \(c_2 \) at mining
Constraint-Based Sequential- Pattern Mining

- Share many similarities with constraint-based itemset mining
- **Anti-monotonic:** If S violates c, the super-sequences of S also violate c
 - sum(S.price) < 150; min(S.value) > 10
- **Monotonic:** If S satisfies c, the super-sequences of S also do so
 - element_count(S) > 5; S ⊇ \{PC, digital_camera\}
- **Data anti-monotonic:** If a sequence s_1 with respect to S violates c_3, s_1 can be removed
 - c_3: sum(S.price) ≥ v
- **Succinct:** Enforce constraint c by explicitly manipulating data
 - S ⊇ \{i-phone, MacAir\}
- **Convertible:** Projection based on the sorted value not sequence order
 - value_avg(S) < 25; profit_sum(S) > 160
 - max(S)/avg(S) < 2; median(S) – min(S) > 5
Timing-Based Constraints in Seq.-Pattern Mining

- **Order constraint**: Some items must happen before the other
 - \{algebra, geometry\} → \{calculus\} (where “→” indicates ordering)
 - Anti-monotonic: Constraint-violating sub-patterns pruned

- **Min-gap/max-gap constraint**: Confines two elements in a pattern
 - E.g., mingap = 1, maxgap = 4
 - Succinct: Enforced directly during pattern growth

- **Max-span constraint**: Maximum allowed time difference between the 1st and the last elements in the pattern
 - E.g., maxspan (S) = 60 (days)
 - Succinct: Enforced directly when the 1st element is determined

- **Window size constraint**: Events in an element do not have to occur at the same time: Enforce max allowed time difference
 - E.g., window-size = 2: Various ways to merge events into elements
Episodes and Episode Pattern Mining

- Episodes and regular expressions: Alternative to seq. patterns
 - Serial episodes: $A \rightarrow B$
 - Parallel episodes: $A \mid B$
 - Regular expressions: $(A|B)C^*(D \rightarrow E)$

- Ex. Given a large shopping sequence database, one may like to find
 - A, B, C, D, E, such as it follows two constraints
 - Ordering following the template $(A|B)C^*(D \rightarrow E)$, and
 - Sum of the prices of A, B, C^*, D, and E is greater than 100, where C^* means C appears *-times

- How to efficiently mine such sequential patterns?
Summary: Constraint-Based Pattern Mining

- Why Constraint-Based Mining?
- Different Kinds of Constraints: Different Pruning Strategies
- Constrained Mining with Pattern Anti-Monotonicity
- Constrained Mining with Pattern Monotonicity
- Constrained Mining with Data Anti-Monotonicity
- Constrained Mining with Succinct Constraints
- Constrained Mining with Convertible Constraints
- Handling Multiple Constraints
- Constraint-Based Sequential-Pattern Mining
Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
Frequent (Sub)Graph Patterns

- Given a labeled graph dataset \(D = \{G_1, G_2, ..., G_n\}\), the supporting graph set of a subgraph \(g\) is \(D_g = \{G_i \mid g \subseteq G_i, G_i \in D\}\)

- \(\text{support}(g) = |D_g|/|D|\)

- A (sub)graph \(g\) is **frequent** if \(\text{support}(g) \geq \text{min_sup}\)

- Ex.: Chemical structures

- Alternative:
 - Mining frequent subgraph patterns from a single large graph or network

Graph Dataset

- \(\text{min_sup} = 2\)

Frequent Graph Patterns

- \(\text{support} = 67\%\)
Applications of Graph Pattern Mining

- Bioinformatics
 - Gene networks, protein interactions, metabolic pathways
- Chem-informatics: Mining chemical compound structures
- Social networks, web communities, tweets, ...
- Cell phone networks, computer networks, ...
- Web graphs, XML structures, Semantic Web, information networks
- Software engineering: Program execution flow analysis
- Building blocks for graph classification, clustering, compression, comparison, and correlation analysis
- Graph indexing and graph similarity search
Graph Pattern Mining Algorithms: Different Methodologies

- Generation of candidate subgraphs
 - Apriori vs. pattern growth (e.g., FSG vs. gSpan)
- Search order
 - Breadth vs. depth
- Elimination of duplicate subgraphs
 - Passive vs. active (e.g., gSpan [Yan & Han, 2002])
- Support calculation
 - Store embeddings (e.g., GASTON [Nijssen & Kok, 2004], FFSM [Huan, Wang, & Prins, 2003], MoFa [Borgelt & Berthold, ICDM’02])
- Order of pattern discovery
 - Path \rightarrow tree \rightarrow graph (e.g., GASTON [Nijssen & Kok, 2004])
Apriori-Based Approach

- The Apriori property (anti-monotonicity): A size-k subgraph is frequent if and only if all of its subgraphs are frequent.

- A candidate size-$(k+1)$ edge/vertex subgraph is generated if its corresponding two k-edge/vertex subgraphs are frequent.

- Iterative mining process:
 - Candidate-generation \rightarrow candidate pruning \rightarrow support counting \rightarrow candidate elimination.

Diagram:
- G is the initial graph.
- G_1, G_2, ..., G_n are generated graphs.
- G' and G'' are intermediate graphs.
- The process involves joining graphs and generating candidate subgraphs.
Candidate Generation:
Vertex Growing vs. Edge Growing

- Methodology: Breadth-search, Apriori joining two size-k graphs
 - Many possibilities at generating size-$(k+1)$ candidate graphs

- Generating new graphs with one more vertex
 - AGM (Inokuchi, Washio, & Motoda, PKDD’00)

- Generating new graphs with one more edge
 - FSG (Kuramochi & Karypis, ICDM’01)

- Performance shows via edge growing is more efficient
Pattern-Growth Approach

- Depth-first growth of subgraphs from \(k\)-edge to \((k+1)\)-edge, then \((k+2)\)-edge subgraphs

- Major challenge
 - Generating many duplicate subgraphs

- Major idea to solve the problem
 - Define an order to generate subgraphs
 - DFS spanning tree: Flatten a graph into a sequence using depth-first search
 - gSpan (Yan & Han, ICDM’02)
Right-most path extension in subgraph pattern growth

- Right-most path: The path from root to the right-most leaf (choose the vertex with the smallest index at each step)
- Reduce generation of duplicate subgraphs

Completeness: The enumeration of graphs using right-most path extension is complete

DFS code: Flatten a graph into a sequence using depth-first search

$e_0: (0,1)$
$e_1: (1,2)$
$e_2: (2,0)$
$e_3: (2,3)$
$e_4: (3,0)$
$e_5: (2,4)$
Why Mine Closed Graph Patterns?

- Challenge: An \(n \)-edge frequent graph may have \(2^n \) subgraphs
- Motivation: Explore *closed frequent subgraphs* to handle graph pattern explosion problem
- A frequent graph \(G \) is *closed* if there exists no supergraph of \(G \) that carries the same support as \(G \)

If this subgraph is *closed* in the graph dataset, it implies that none of its frequent super-graphs carries the same support

- *Lossless compression*: Does not contain non-closed graphs, but still ensures that the mining result is complete
- Algorithm CloseGraph: Mines closed graph patterns directly
CloseGraph: Directly Mining Closed Graph Patterns

- CloseGraph: Mining closed graph patterns by extending gSpan (Yan & Han, KDD’03)

At what condition can we stop searching their children, i.e., early termination?

- Suppose G and G₁ are frequent, and G is a subgraph of G₁
- If in any part of the graph in the dataset where G occurs, G₁ also occurs, then we need not grow G (except some special, subtle cases), since none of G’s children will be closed except those of G₁
Experiment and Performance Comparison

- The AIDS antiviral screen compound dataset from NCI/NIH
- The dataset contains 43,905 chemical compounds
- Discovered patterns: The smaller minimum support, the bigger and more interesting subgraph patterns discovered

of Patterns: Frequent vs. Closed

Runtime: Frequent vs. Closed
Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
Pattern Mining Application: Software Bug Detection

- Mining rules from source code
 - Bugs as deviant behavior (e.g., by statistical analysis)
 - Mining programming rules (e.g., by frequent itemset mining)
 - Mining function precedence protocols (e.g., by frequent subsequence mining)
 - Revealing neglected conditions (e.g., by frequent itemset/subgraph mining)

- Mining rules from revision histories
 - By frequent itemset mining

- Mining copy-paste patterns from source code
 - Find copy-paste bugs (e.g., CP-Miner [Li et al., OSDI’04]) (to be discussed here)

Application Example: Mining Copy-and-Paste Bugs

- Copy-pasting is common
 - 12% in Linux file system
 - 19% in X Window system
- Copy-pasted code is error-prone
- Mine “forget-to-change” bugs by sequential pattern mining
 - Build a sequence database from source code
 - Mining sequential patterns
 - Finding mismatched identifier names & bugs

Simplified example from `linux-2.6.6/arch/sparc/prom/memory.c`:

```c
void __init prom_meminit(void)
{
    ....
    for (i=0; i<n; i++) {
        total[i].adr = list[i].addr;
        total[i].bytes = list[i].size;
        total[i].more = &total[i+1];
    }
    ....

    for (i=0; i<n; i++) {
        taken[i].adr = list[i].addr;
        taken[i].bytes = list[i].size;
        taken[i].more = &total[i+1];
    }

    (Simplified example from linux-2.6.6/arch/sparc/prom/memory.c)
```

Code copy-and-pasted but forget to change “id”!

Courtesy of Yuanyuan Zhou@UCSD
Building Sequence Database from Source Code

- Statement → number
- Tokenize each component
 - Different operators, constants, key words → different tokens
 - Same type of identifiers → same token
- Program → A long sequence
 - Cut the long sequence by blocks

Map a statement to a number

Old = 3; New = 3;

Tokenize,

5 61 20

Hash,

16

Final sequence DB:
(65)
(16, 16, 71)
...
(65)
(16, 16, 71)

Hash values

for (i=0; i<n; i++) {
 total[i].adr = list[i].addr;
 total[i].bytes = list[i].size;
 total[i].more = &total[i+1];
}

... ...

for (i=0; i<n; i++) {
 taken[i].adr = list[i].addr;
 taken[i].bytes = list[i].size;
 taken[i].more = &total[i+1];
}
Sequential Pattern Mining & Detecting “Forget-to-Change” Bugs

- Modification to the sequence pattern mining algorithm
 - Constrain the max gap

- Composing Larger Copy-Pasted Segments
 - Combine the neighboring copy-pasted segments repeatedly

- Find conflicts: Identify names that cannot be mapped to the corresponding ones
 - E.g., 1 out of 4 “total” is unchanged, unchanged ratio = 0.25
 - If $0 < \text{unchanged ratio} < \text{threshold}$, then report it as a bug

- CP-Miner reported many C-P bugs in Linux, Apache, ... out of millions of LOC (lines of code)

Courtesy of Yuanyuan Zhou@UCSD
Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
Summary: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
 - Mining Multiple-Level Associations
 - Mining Multi-Dimensional Associations
 - Mining Quantitative Associations
 - Mining Negative Correlations
 - Mining Compressed and Redundancy-Aware Patterns

- Sequential Pattern Mining
 - Sequential Pattern and Sequential Pattern Mining
 - GSP: Apriori-Based Sequential Pattern Mining
 - SPADE: Sequential Pattern Mining in Vertical Data Format
 - PrefixSpan: Sequential Pattern Mining by Pattern-Growth
 - CloSpan: Mining Closed Sequential Patterns

- Constraint-Based Frequent Pattern Mining
 - Why Constraint-Based Mining?
 - Constrained Mining with Pattern Anti-Monotonicity
 - Constrained Mining with Pattern Monotonicity
 - Constrained Mining with Data Anti-Monotonicity
 - Constrained Mining with Succinct Constraints
 - Constrained Mining with Convertible Constraints
 - Handling Multiple Constraints
 - Constraint-Based Sequential-Pattern Mining

- Graph Pattern Mining
 - Graph Pattern and Graph Pattern Mining
 - Apriori-Based Graph Pattern Mining Methods
 - gSpan: A Pattern-Growth-Based Method
 - CloseGraph: Mining Closed Graph Patterns

- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
References: Mining Diverse Patterns

- R. Srikant and R. Agrawal, “Mining generalized association rules”, VLDB'95
- D. Xin, J. Han, X. Yan and H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60(1): 5-29, 2007
- D. Xin, H. Cheng, X. Yan, and J. Han, "Extracting Redundancy-Aware Top-K Patterns", KDD'06
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007
- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, “Mining Colossal Frequent Patterns by Core Pattern Fusion”, ICDE'07
References: Sequential Pattern Mining

- J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, "Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach", IEEE TKDE, 16(10), 2004
- X. Yan, J. Han, and R. Afshar, “CloSpan: Mining Closed Sequential Patterns in Large Datasets”, SDM'03
References: Constraint-Based Frequent Pattern Mining

- R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang, “Exploratory mining and pruning optimizations of constrained association rules”, SIGMOD’98
- G. Grahne, L. Lakshmanan, and X. Wang, “Efficient mining of constrained correlated sets”, ICDE'00
- J. Pei, J. Han, and L. V. S. Lakshmanan, “Mining Frequent Itemsets with Convertible Constraints”, ICDE'01
- J. Pei, J. Han, and W. Wang, “Mining Sequential Patterns with Constraints in Large Databases”, CIKM'02
- F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, “ExAnte: Anticipated Data Reduction in Constrained Pattern Mining”, PKDD'03
- F. Zhu, X. Yan, J. Han, and P. S. Yu, “gPrune: A Constraint Pushing Framework for Graph Pattern Mining”, PAKDD'07
References: Graph Pattern Mining

- C. Borgelt and M. R. Berthold, Mining molecular fragments: Finding relevant substructures of molecules, ICDM'02
- J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of isomorphism, ICDM'03
- A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data, PKDD'00
- M. Kuramochi and G. Karypis. Frequent subgraph discovery, ICDM'01
- S. Nijssen and J. Kok. A Quickstart in Frequent Structure Mining can Make a Difference. KDD'04
- N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from semistructured data, ICDM'02
- X. Yan and J. Han, gSpan: Graph-Based Substructure Pattern Mining, ICDM'02
- X. Yan and J. Han, CloseGraph: Mining Closed Frequent Graph Patterns, KDD'03
- X. Yan, P. S. Yu, J. Han, Graph Indexing: A Frequent Structure-based Approach, SIGMOD'04
- X. Yan, P. S. Yu, and J. Han, Substructure Similarity Search in Graph Databases, SIGMOD'05