Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
Mining Diverse Patterns

- Mining Multiple-Level Associations
- Mining Multi-Dimensional Associations
- Mining Quantitative Associations
- Mining Negative Correlations
- Mining Compressed and Redundancy-Aware Patterns
Mining Multiple-Level Frequent Patterns

- Items often form hierarchies
 - Ex.: Dairyland 2% milk; Wonder wheat bread
- How to set min-support thresholds?
 - Uniform min-support across multiple levels (reasonable?)
 - Level-reduced min-support: Items at the lower level are expected to have lower support
- Efficient mining: *Shared* multi-level mining
 - Use the lowest min-support to pass down the set of candidates

Uniform support

- Milk
 - Level 1
 - min_sup = 5%
 - [support = 10%]
- 2% Milk
 - Level 2
 - min_sup = 5%
 - [support = 6%]
- Skim Milk
 - Level 2
 - min_sup = 1%
 - [support = 2%]

Reduced support

- Level 1
 - min_sup = 5%
Redundancy Filtering at Mining Multi-Level Associations

- Multi-level association mining may generate many redundant rules
- Redundancy filtering: Some rules may be redundant due to “ancestor” relationships between items
 - milk ⇒ wheat bread [support = 8%, confidence = 70%] (1)
 - 2% milk ⇒ wheat bread [support = 2%, confidence = 72%] (2)
- Suppose the 2% milk sold is about ¼ of milk sold in gallons
 - (2) should be able to be “derived” from (1)
- A rule is *redundant* if its support is close to the “expected” value, according to its “ancestor” rule, and it has a similar confidence as its “ancestor”
- Rule (1) is an ancestor of rule (2), which one to prune?
Customized Min-Supports for Different Kinds of Items

- We have used the same min-support threshold for all the items or item sets to be mined in each association mining.
- In reality, some items (e.g., diamond, watch, ...) are valuable but less frequent.
- It is necessary to have customized min-support settings for different kinds of items.
- One Method: Use group-based “individualized” min-support
 - E.g., {diamond, watch}: 0.05%; {bread, milk}: 5%; ...
 - How to mine such rules efficiently?
 - Existing scalable mining algorithms can be easily extended to cover such cases.
Mining Multi-Dimensional Associations

- Single-dimensional rules (e.g., items are all in “product” dimension)
 - buys(X, “milk”) ⇒ buys(X, “bread”)

- Multi-dimensional rules (i.e., items in ≥2 dimensions or predicates)
 - Inter-dimension association rules (*no repeated predicates*)
 - Hybrid-dimension association rules (*repeated predicates*)

- Attributes can be categorical or numerical
 - Categorical Attributes (e.g., *profession, product*: no ordering among values): Data cube for inter-dimension association
 - Quantitative Attributes: Numeric, implicit ordering among values—discretization, clustering, and gradient approaches
Mining Quantitative Associations

- Mining associations with numerical attributes
 - Ex.: Numerical attributes: age and salary

- Methods
 - Static discretization based on predefined concept hierarchies
 - Discretization on each dimension with hierarchy
 - age: {0-10, 10-20, ..., 90-100} → {young, mid-aged, old}
 - Dynamic discretization based on data distribution
 - Clustering: Distance-based association
 - First one-dimensional clustering, then association
 - Deviation analysis:
 - Gender = female ⇒ Wage: mean=$7/hr (overall mean = $9)
Mining Extraordinary Phenomena in Quantitative Association Mining

- Mining extraordinary (i.e., interesting) phenomena
 - Ex.: Gender = female ⇒ Wage: mean=$7/hr (overall mean = $9)
 - LHS: a subset of the population
 - RHS: an extraordinary behavior of this subset
- The rule is accepted only if a statistical test (e.g., Z-test) confirms the inference with high confidence
- Subrule: Highlights the extraordinary behavior of a subset of the population of the super rule
 - Ex.: (Gender = female) ^ (South = yes) ⇒ mean wage = $6.3/hr
- Rule condition can be categorical or numerical (quantitative rules)
 - Ex.: Education in [14-18] (yrs) ⇒ mean wage = $11.64/hr
- Efficient methods have been developed for mining such extraordinary rules (e.g., Aumann and Lindell@KDD’99)
Rare Patterns vs. Negative Patterns

- Rare patterns
 - Very low support but interesting (e.g., buying Rolex watches)
 - How to mine them? Setting individualized, group-based min-support thresholds for different groups of items

- Negative patterns
 - Negatively correlated: Unlikely to happen together
 - Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford Fusion are likely negatively correlated patterns
 - How to define negative patterns?
Defining Negative Correlated Patterns

- A support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., \(\text{sup}(A \cup B) \ll \text{sup}(A) \times \text{sup}(B) \)
 - Then A and B are negatively correlated

- Is this a good definition for large transaction datasets?

- Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
 - When there are in total 200 transactions, we have
 - \(s(A \cup B) = 0.005, s(A) \times s(B) = 0.25, s(A \cup B) \ll s(A) \times s(B) \)
 - But when there are \(10^5 \) transactions, we have
 - \(s(A \cup B) = 1/10^5, s(A) \times s(B) = 1/10^3 \times 1/10^3, s(A \cup B) > s(A) \times s(B) \)

- What is the problem? — Null transactions: The support-based definition is not null-invariant!
Defining Negative Correlation: Need Null-Invariance in Definition

- A good definition on negative correlation should take care of the null-invariance problem
- Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions
- A Kulczynski measure-based definition
 - If itemsets A and B are frequent but
 \[(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)})/2 < \epsilon,\]
 where \(\epsilon\) is a negative pattern threshold, then A and B are negatively correlated
- For the same needle package problem:
 - No matter there are in total 200 or \(10^5\) transactions
 - If \(\epsilon = 0.01\), we have
 \[(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)})/2 = (0.01 + 0.01)/2 < \epsilon\]
Mining Compressed Patterns

- Why mining compressed patterns?
 - Too many scattered patterns but not so meaningful

- Pattern distance measure
 \[Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|} \]

- \(\delta\)-clustering: For each pattern \(P\), find all patterns which can be expressed by \(P\) and whose distance to \(P\) is within \(\delta\) (\(\delta\)-cover)

- All patterns in the cluster can be represented by \(P\)

- Method for efficient, direct mining of compressed frequent patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60:5-29, 2007)

<table>
<thead>
<tr>
<th>Pat-ID</th>
<th>Item-Sets</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>{38,16,18,12}</td>
<td>205227</td>
</tr>
<tr>
<td>P2</td>
<td>{38,16,18,12,17}</td>
<td>205211</td>
</tr>
<tr>
<td>P3</td>
<td>{39,38,16,18,12,17}</td>
<td>101758</td>
</tr>
<tr>
<td>P4</td>
<td>{39,16,18,12,17}</td>
<td>161563</td>
</tr>
<tr>
<td>P5</td>
<td>{39,16,18,12}</td>
<td>161576</td>
</tr>
</tbody>
</table>

- Closed patterns
 - P1, P2, P3, P4, P5
 - Emphasizes too much on support
 - There is no compression

- Max-patterns
 - P3: information loss

- Desired output (a good balance):
 - P2, P3, P4
Desired patterns: high significance & low redundancy

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06
Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
Sequential Pattern Mining

- Sequential Pattern and Sequential Pattern Mining
- GSP: Apriori-Based Sequential Pattern Mining
- SPADE: Sequential Pattern Mining in Vertical Data Format
- PrefixSpan: Sequential Pattern Mining by Pattern-Growth
- CloSpan: Mining Closed Sequential Patterns
Sequential Databases & Sequential Patterns

- Sequential pattern mining has broad applications
 - Customer shopping sequences
 - Purchase a laptop first, then a digital camera, and then a smartphone, within 6 months
 - Medical treatments, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, ...
 - Weblog click streams, calling patterns, ...
 - Software engineering: Program execution sequences, ...
 - Biological sequences: DNA, protein, ...
- Transaction DB, sequence DB vs. time-series DB
- Gapped vs. non-gapped sequential patterns
 - Shopping sequences, clicking streams vs. biological sequences
Sequential Pattern and Sequential Pattern Mining

- **Sequential pattern mining**: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A **sequence database**

<table>
<thead>
<tr>
<th>SID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><a(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>20</td>
<td><(ad)c(bc)(ae)></td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(df)c(b)</td>
</tr>
<tr>
<td>40</td>
<td><eg(af)c(bc)></td>
</tr>
</tbody>
</table>

A **sequence**: <(ef)(ab)(df)c(b)>

- An **element** may contain a set of **items** (also called **events**)
- Items within an element are unordered and we list them alphabetically

<abc> is a **subsequence** of <a(abc)(ac)d(cf)>

- Given **support threshold** min_sup = 2, <(ab)c> is a **sequential pattern**
Sequential Pattern Mining Algorithms

- Algorithm requirement: Efficient, scalable, finding complete set, incorporating various kinds of user-specific constraints

- The Apriori property still holds: If a subsequence \(s_1 \) is infrequent, none of \(s_1 \)'s super-sequences can be frequent

- Representative algorithms
 - GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT’96)
 - Vertical format-based mining: SPADE (Zaki@Machine Learning’00)
 - Pattern-growth methods: PrefixSpan (Pei, et al. @TKDE’04)
 - Mining closed sequential patterns: CloSpan (Yan, et al. @SDM’03)
 - Constraint-based sequential pattern mining (to be covered in the constraint mining section)
GSP: Apriori-Based Sequential Pattern Mining

- Initial candidates: All 8-singleton sequences
 - \(<a>, , <c>, <d>, <e>, <f>, <g>, <h>\)
- Scan DB once, count support for each candidate
- Generate length-2 candidate sequences

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Cand.} & \text{sup} \\
\hline
\langle a \rangle & 3 \\
\langle b \rangle & 5 \\
\langle c \rangle & 4 \\
\langle d \rangle & 3 \\
\langle e \rangle & 3 \\
\langle f \rangle & 2 \\
\langle g \rangle & 1 \\
\langle h \rangle & 1 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\langle a \rangle & \langle a \rangle & \langle ab \rangle & \langle ac \rangle & \langle ad \rangle & \langle ae \rangle & \langle af \rangle \\
\langle b \rangle & \langle ba \rangle & \langle bb \rangle & \langle bc \rangle & \langle bd \rangle & \langle be \rangle & \langle bf \rangle \\
\langle c \rangle & \langle ca \rangle & \langle cb \rangle & \langle cc \rangle & \langle cd \rangle & \langle ce \rangle & \langle cf \rangle \\
\langle d \rangle & \langle da \rangle & \langle db \rangle & \langle dc \rangle & \langle dd \rangle & \langle de \rangle & \langle df \rangle \\
\langle e \rangle & \langle ea \rangle & \langle eb \rangle & \langle ec \rangle & \langle ed \rangle & \langle ee \rangle & \langle ef \rangle \\
\langle f \rangle & \langle fa \rangle & \langle fb \rangle & \langle fc \rangle & \langle fd \rangle & \langle fe \rangle & \langle ff \rangle \\
\hline
\end{array}
\]

- \(\text{min}_\text{sup} = 2\)

Without Apriori pruning:
- (8 singletons) \(8 \times 8 + 8 \times 7 / 2 = 92\) length-2 candidates

With pruning, length-2 candidates: \(36 + 15 = 51\)

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT’96
GSP Mining and Pruning

5th scan: 1 cand. 1 length-5 seq. pat.
4th scan: 8 cand. 7 length-4 seq. pat.
3rd scan: 46 cand. 20 length-3 seq. pat. 20 cand. not in DB at all
2nd scan: 51 cand. 19 length-2 seq. pat. 10 cand. not in DB at all
1st scan: 8 cand. 6 length-1 seq. pat.

- Repeat (for each level (i.e., length-k))
 - Scan DB to find length-k frequent sequences
 - Generate length-(k+1) candidate sequences from length-k frequent sequences using Apriori
 - set k = k+1
 - Until no frequent sequence or no candidate can be found

<table>
<thead>
<tr>
<th>SID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><(bd)cb(ac)></td>
</tr>
<tr>
<td>20</td>
<td><(bf)(ce)b(fg)></td>
</tr>
<tr>
<td>30</td>
<td><(ah)(bf)abf></td>
</tr>
<tr>
<td>40</td>
<td><(be)(ce)d></td>
</tr>
<tr>
<td>50</td>
<td><a(bd)bcb(ade)></td>
</tr>
</tbody>
</table>
Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

- A sequence database is mapped to: <SID, EID>
- Grow the subsequences (patterns) one item at a time by Apriori candidate generation

Ref: SPADE (Sequential PAttern Discovery using Equivalent Class) [M. Zaki 2001]
PrefixSpan: A Pattern-Growth Approach

- PrefixSpan Mining: Prefix Projections
 - Step 1: Find length-1 sequential patterns
 - <a>, , <c>, <d>, <e>, <f>
 - Step 2: Divide search space and mine each projected DB
 - <a>-projected DB,
 - -projected DB,
 - ...
 - <f>-projected DB, ...

Prefix and suffix
- Given <a(abc)(ac)d(cf)>
- Prefixes: <a>, <aa>, <a(ab)>, <a(abc)>, ...
- Suffix: Prefixes-based projection

<table>
<thead>
<tr>
<th>SID</th>
<th>Sequence</th>
<th>Prefix</th>
<th>Suffix (Projection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><a(abc)(ac)d(cf)></td>
<td><a></td>
<td><a(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>20</td>
<td><(ad)c(bc)(ae)></td>
<td><aa></td>
<td><(_bc)(ac)d(cf)></td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(df)cb></td>
<td><ab></td>
<td><(_c)(ac)d(cf)></td>
</tr>
<tr>
<td>40</td>
<td><eg(af)cbbc></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PrefixSpan (Prefix-projected Sequential pattern mining)
Pei, et al. @TKDE’04

min_sup = 2
PrefixSpan: Mining Prefix-Projected DBs

<table>
<thead>
<tr>
<th>SID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><a(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>20</td>
<td><(ad)c(bc)(ae)></td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(df)cb></td>
</tr>
<tr>
<td>40</td>
<td><eg(af)cbc></td>
</tr>
</tbody>
</table>

Length-1 sequential patterns:
- <a>, , <c>, <d>, <e>, <f>

Length-2 sequential patterns:
- <aa>, <ab>, <(ab)>, <ac>, <ad>, <af>

PrefixSpan:
- No candidate subsequences to be generated
- Projected DBs keep shrinking

Major strength of PrefixSpan:
- Maximal length = 10
- No candidate subsequences to be generated
- Projected DBs keep shrinking

$\text{min_sup} = 2$
Implementation Consideration: Pseudo-Projection vs. Physical Projection

- Major cost of PrefixSpan: Constructing projected DBs
- Suffixes largely repeating in recursive projected DBs
- When DB can be held in main memory, use pseudo projection
 - No physically copying suffixes
 - Pointer to the sequence
 - Offset of the suffix
- But if it does not fit in memory
 - Physical projection
- Suggested approach:
 - Integration of physical and pseudo-projection
 - Swapping to pseudo-projection when the data fits in memory
A closed sequential pattern s: There exists no superpattern s' such that $s' \supset s$, and s' and s have the same support

Which ones are closed? $\langle abc \rangle: 20$, $\langle abcd \rangle: 20$, $\langle abcde \rangle: 15$

Why directly mine closed sequential patterns?
- Reduce # of (redundant) patterns
- Attain the same expressive power

Property P_1: If $s \supset s_1$, s is closed iff two project DBs have the same size

Explore Backward Subpattern and Backward Superpattern pruning to prune redundant search space

Greatly enhances efficiency (Yan, et al., SDM’03)
CloSpan: When Two Projected DBs Have the Same Size

- If \(s \supseteq s_2 \), \(s \) is closed iff two project DBs have the same size
- When two projected sequence DBs have the same size?
- Here is one example:

<table>
<thead>
<tr>
<th>ID</th>
<th>Sequence</th>
<th>(\min_sup = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><aeefbcg></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><afegb(ac)></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><(af)ea></td>
<td></td>
</tr>
</tbody>
</table>

- Only need to keep size = 12 (including parentheses)
- Backward subpattern pruning
- Backward superpattern pruning
Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
Constraint-Based Pattern Mining

- Why Constraint-Based Mining?
- Different Kinds of Constraints: Different Pruning Strategies
- Constrained Mining with Pattern Anti-Monotonicity
- Constrained Mining with Pattern Monotonicity
- Constrained Mining with Data Anti-Monotonicity
- Constrained Mining with Succinct Constraints
- Constrained Mining with Convertible Constraints
- Handling Multiple Constraints
- Constraint-Based Sequential-Pattern Mining
Why Constraint-Based Mining?

- Finding **all** the patterns in a dataset **autonomously**?—unrealistic!
- Too many patterns but not necessarily user-interested!
- Pattern mining in practice: Often a user-guided, **interactive** process
 - User directs what to be mined using a **data mining query language** (or a graphical user interface), **specifying various kinds of constraints**
- What is constraint-based mining?
 - Mine together with user-provided constraints
- Why constraint-based mining?
 - User flexibility: User provides **constraints** on what to be mined
 - Optimization: System explores such constraints for mining efficiency
 - E.g., Push constraints deeply into the mining process
Various Kinds of User-Specified Constraints in Data Mining

- **Knowledge type constraint**—Specifying what kinds of knowledge to mine
 - Ex.: Classification, association, clustering, outlier finding, ...

- **Data constraint**—using SQL-like queries
 - Ex.: Find products sold together in NY stores this year

- **Dimension/level constraint**—similar to projection in relational database
 - Ex.: In relevance to region, price, brand, customer category

- **Interestingness constraint**—various kinds of thresholds
 - Ex.: Strong rules: $\text{min_sup} \geq 0.02$, $\text{min_conf} \geq 0.6$, $\text{min_correlation} \geq 0.7$

- **Rule (or pattern) constraint**
 - Ex.: Small sales (price < $10) triggers big sales (sum > $200)

The focus of this study
A constraint c is **anti-monotone**

- If an itemset S violates constraint c, so does any of its superset
- That is, mining on itemset S can be terminated

- **Ex. 1:** c_1: $\sum(S . price) \leq v$ is anti-monotone
- **Ex. 2:** c_2: range($S . profit$) ≤ 15 is anti-monotone

- Itemset ab violates c_2 (range(ab) = 40)
- So does every superset of ab

- **Ex. 3:** c_3: $\sum(S . Price) \geq v$ is **not** anti-monotone
- **Ex. 4.** Is c_4: $support(S) \geq \sigma$ anti-monotone?

Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

Note: item.price > 0
Profit can be negative
Pattern Monotonicity and Its Roles

- A constraint c is **monotone**: If an itemset S **satisfies** the constraint c, so does any of its superset.
 - That is, we do not need to check c in subsequent mining.
 - Ex. 1: $c_1: \text{sum}(S.Price) \geq v$ is monotone.
 - Ex. 2: $c_2: \text{min}(S.Price) \leq v$ is monotone.
 - Ex. 3: $c_3: \text{range}(S.profit) \geq 15$ is monotone.
 - Itemset ab satisfies c_3.
 - So does every superset of ab.

<table>
<thead>
<tr>
<th>TID</th>
<th>Transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>a, b, c, d, f, h</td>
</tr>
<tr>
<td>20</td>
<td>b, c, d, f, g, h</td>
</tr>
<tr>
<td>30</td>
<td>b, c, d, f, g</td>
</tr>
<tr>
<td>40</td>
<td>a, c, e, f, g</td>
</tr>
<tr>
<td></td>
<td>min_sup = 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>b</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>150</td>
<td>-20</td>
</tr>
<tr>
<td>d</td>
<td>35</td>
<td>-15</td>
</tr>
<tr>
<td>e</td>
<td>55</td>
<td>-30</td>
</tr>
<tr>
<td>f</td>
<td>45</td>
<td>-10</td>
</tr>
<tr>
<td>g</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>h</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: item.price > 0
Profit can be negative
A constraint c is **data anti-monotone**: In the mining process, if a data entry t cannot satisfy a pattern p under c, t cannot satisfy p's superset either.

- **Data space pruning**: Data entry t can be pruned.
 - **Ex. 1**: c_1: \(\sum (S.\text{Profit}) \geq \nu \) is **data anti-monotone**
 - Let constraint c_1 be: \(\sum (S.\text{Profit}) \geq 25 \)
 - T_{30}: \{b, c, d, f, g\} can be removed since none of their combinations can make an S whose sum of the profit is ≥ 25
 - **Ex. 2**: c_2: \(\min (S.\text{Price}) \leq \nu \) is **data anti-monotone**
 - Consider $\nu = 5$ but every item in a transaction, say T_{50}, has a price higher than 10
 - **Ex. 3**: c_3: \(\text{range}(S.\text{Profit}) > 25 \) is **data anti-monotone**

Note: item.price > 0
Profit can be negative
Data Space Pruning Should Be Explored Recursively

- Example. c_3: $\text{range}(S.\text{Profit}) > 25$
 - We check b’s projected database
 - But item “a” is infrequent ($\text{sup} = 1$)
 - After removing “a (40)” from T_{10}
 - T_{10} cannot satisfy c_3 any more
 - Since “b (0)” and “c (-20), d (-15), f (-10), h (5)”
 - By removing T_{10}, we can also prune “h” in T_{20}

- Note: c_3 prunes T_{10} effectively only after “a” is pruned (by min-sup) in b’s projected DB
Succinctness: Pruning Both Data and Pattern Spaces

- Succinctness: If the constraint c can be enforced by directly manipulating the data
- Ex. 1: To find those patterns without item i
 - Remove i from DB and then mine (pattern space pruning)
- Ex. 2: To find those patterns containing item i
 - Mine only i-projected DB (data space pruning)
- Ex. 3: c_3: $\min(S.Price) \leq v$ is succinct
 - Start with only items whose price $\leq v$ and remove transactions with high-price items only (pattern + data space pruning)
- Ex. 4: c_4: $\sum(S.Price) \geq v$ is not succinct
 - It cannot be determined beforehand since sum of the price of itemset S keeps increasing
Convertible Constraints: Ordering Data in Transactions

- Convert tough constraints into (anti-)monotone by proper ordering of items in transactions
- Examine c_1: $\text{avg}(S.\text{profit}) > 20$
 - Order items in (profit) value-descending order
 - $<a, g, f, b, h, d, c, e>$
 - An itemset ab violates c_1 ($\text{avg}(ab) = 20$)
 - So does ab^* (i.e., ab-projected DB)
 - C_1: anti-monotone if patterns grow in the right order!
- Can item-reordering work for Apriori?
 - Level-wise candidate generation requires multi-way checking!
 - $\text{avg}(agf) = 21.7 > 20$, but $\text{avg}(gf) = 12.5 < 20$
 - Apriori will not generate “agf” as a candidate

<table>
<thead>
<tr>
<th>TID</th>
<th>Transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>a, b, c, d, f, h</td>
</tr>
<tr>
<td>20</td>
<td>a, b, c, d, f, g, h</td>
</tr>
<tr>
<td>30</td>
<td>b, c, d, f, g</td>
</tr>
<tr>
<td>40</td>
<td>a, c, e, f, g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>min_sup = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>h</td>
</tr>
</tbody>
</table>
Different Kinds of Constraints Lead to Different Pruning Strategies

- In summary, constraints can be categorized as
 - **Pattern space pruning constraints** vs. **data space pruning constraints**
 - **Pattern space pruning constraints**
 - **Anti-monotonic**: If constraint c is violated, its further mining can be terminated
 - **Monotonic**: If c is satisfied, no need to check c again
 - **Succinct**: If the constraint c can be enforced by directly manipulating the data
 - **Convertible**: c can be converted to monotonic or anti-monotonic if items can be properly ordered in processing
 - **Data space pruning constraints**
 - **Data succinct**: Data space can be pruned at the initial pattern mining process
 - **Data anti-monotonic**: If a transaction t does not satisfy c, then t can be pruned to reduce data processing effort
How to Handle Multiple Constraints?

- It is beneficial to use multiple constraints in pattern mining
- But different constraints may require potentially conflicting item-ordering
 - If there exists conflict ordering between c_1 and c_2
 - Try to sort data and enforce *one constraint* first (which one?)
 - Then enforce the other constraint when mining the projected databases
- Ex. c_1: $\text{avg}(S.\text{profit}) > 20$, and c_2: $\text{avg}(S.\text{price}) < 50$
 - Assume c_1 has more pruning power
 - Sort in profit descending order and use c_1 first
 - For each project DB, sort trans. in price ascending order and use c_2 at mining
Constraint-Based Sequential-Pattern Mining

- Share many similarities with constraint-based itemset mining

- **Anti-monotonic:** If S violates c, the super-sequences of S also violate c
 - $\text{sum}(S.\text{price}) < 150; \text{min}(S.\text{value}) > 10$

- **Monotonic:** If S satisfies c, the super-sequences of S also do so
 - $\text{element_count}(S) > 5; S \supseteq \{\text{PC, digital_camera}\}$

- **Data anti-monotonic:** If a sequence s_1 with respect to S violates c_3, s_1 can be removed
 - $c_3: \text{sum}(S.\text{price}) \geq v$

- **Succinct:** Enforce constraint c by explicitly manipulating data
 - $S \supseteq \{\text{i-phone, MacAir}\}$

- **Convertible:** Projection based on the sorted value not sequence order
 - $\text{value_avg}(S) < 25; \text{profit_sum}(S) > 160$
 - $\text{max}(S)/\text{avg}(S) < 2; \text{median}(S) - \text{min}(S) > 5$
Timing-Based Constraints in Seq.-Pattern Mining

- **Order constraint**: Some items must happen before the other
 - \{algebra, geometry\} \(\rightarrow\) \{calculus\} (where “\(\rightarrow\)” indicates ordering)
 - Anti-monotonic: Constraint-violating sub-patterns pruned
- **Min-gap/max-gap constraint**: Confines two elements in a pattern
 - E.g., mingap = 1, maxgap = 4
 - Succinct: Enforced directly during pattern growth
- **Max-span constraint**: Maximum allowed time difference between the 1st and the last elements in the pattern
 - E.g., maxspan (S) = 60 (days)
 - Succinct: Enforced directly when the 1st element is determined
- **Window size constraint**: Events in an element do not have to occur at the same time: Enforce max allowed time difference
 - E.g., window-size = 2: Various ways to merge events into elements
Episodes and Episode Pattern Mining

- Episodes and regular expressions: Alternative to seq. patterns
 - Serial episodes: \(A \rightarrow B \)
 - Parallel episodes: \(A \mid B \)
 - Regular expressions: \((A \mid B)C^*(D \rightarrow E)\)

- Ex. Given a large shopping sequence database, one may like to find
 - A, B, C, D, E, such as it follows two constraints
 - Ordering following the template \((A \mid B)C^*(D \rightarrow E)\), and
 - Sum of the prices of A, B, C*, D, and E is greater than $100, where C* means C appears *-times

- How to efficiently mine such sequential patterns?
Summary: Constraint-Based Pattern Mining

- Why Constraint-Based Mining?
- Different Kinds of Constraints: Different Pruning Strategies
- Constrained Mining with Pattern Anti-Monotonicity
- Constrained Mining with Pattern Monotonicity
- Constrained Mining with Data Anti-Monotonicity
- Constrained Mining with Succinct Constraints
- Constrained Mining with Convertible Constraints
- Handling Multiple Constraints
- Constraint-Based Sequential-Pattern Mining
Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
What Is Graph Pattern Mining?

- Chem-informatics:
 - Mining frequent chemical compound structures

- Social networks, web communities, tweets, ...
 - Finding frequent research collaboration subgraphs
Frequent (Sub)Graph Patterns

- Given a labeled graph dataset $D = \{G_1, G_2, ..., G_n\}$, the supporting graph set of a subgraph g is $D_g = \{G_i | g \subseteq G_i, G_i \in D\}$

- $\text{support}(g) = \frac{|D_g|}{|D|}$

- A (sub)graph g is **frequent** if $\text{support}(g) \geq \text{min}_\text{sup}$

- Ex.: Chemical structures

- Alternative:
 - Mining frequent subgraph patterns from a single large graph or network

- Example:
 - $\text{min}_\text{sup} = 2$
 - Support $= 67\%$

Graph Dataset

Frequent Graph Patterns
Applications of Graph Pattern Mining

- Bioinformatics
 - Gene networks, protein interactions, metabolic pathways
- Chem-informatics: Mining chemical compound structures
- Social networks, web communities, tweets, ...
- Cell phone networks, computer networks, ...
- Web graphs, XML structures, Semantic Web, information networks
- Software engineering: Program execution flow analysis
- Building blocks for graph classification, clustering, compression, comparison, and correlation analysis
- Graph indexing and graph similarity search
Graph Pattern Mining Algorithms: Different Methodologies

- Generation of candidate subgraphs
 - Apriori vs. pattern growth (e.g., FSG vs. gSpan)
- Search order
 - Breadth vs. depth
- Elimination of duplicate subgraphs
 - Passive vs. active (e.g., gSpan [Yan & Han, 2002])
- Support calculation
 - Store embeddings (e.g., GASTON [Nijssen & Kok, 2004], FFSM [Huan, Wang, & Prins, 2003], MoFa [Borgelt & Berthold, ICDM’02])
- Order of pattern discovery
 - Path → tree → graph (e.g., GASTON [Nijssen & Kok, 2004])
Apriori-Based Approach

- The Apriori property (anti-monotonicity): A size-\(k\) subgraph is frequent if and only if all of its subgraphs are frequent.

- A candidate size-(\(k+1\)) edge/vertex subgraph is generated if its corresponding two \(k\)-edge/vertex subgraphs are frequent.

- Iterative mining process:
 - Candidate-generation \(\rightarrow\) candidate pruning \(\rightarrow\) support counting \(\rightarrow\) candidate elimination.
Candidate Generation: Vertex Growing vs. Edge Growing

- Methodology: Breadth-search, Apriori joining two size-k graphs
 - Many possibilities at generating size-$(k+1)$ candidate graphs

- Generating new graphs with one more vertex
 - AGM (Inokuchi, Washio, & Motoda, PKDD’00)

- Generating new graphs with one more edge
 - FSG (Kuramochi & Karypis, ICDM’01)

- Performance shows *via edge growing* is more efficient
Pattern-Growth Approach

- Depth-first growth of subgraphs from \(k \)-edge to \((k+1)\)-edge, then \((k+2)\)-edge subgraphs

- Major challenge
 - Generating many duplicate subgraphs

- Major idea to solve the problem
 - Define an order to generate subgraphs
 - DFS spanning tree: Flatten a graph into a sequence using depth-first search
 - gSpan (Yan & Han, ICDM’02)

\[G \rightarrow G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_n \rightarrow \ldots \]

\[k\text{-edge} \rightarrow (k+1)\text{-edge} \rightarrow (k+2)\text{-edge} \]

duplicate graphs
gSPAN: Graph Pattern Growth in Order

- **Right-most path extension** in subgraph pattern growth
- Right-most path: The path from root to the right-most leaf (choose the vertex with the smallest index at each step)
- Reduce generation of duplicate subgraphs
- **Completeness**: The enumeration of graphs using right-most path extension is **complete**
- DFS code: Flatten a graph into a sequence using depth-first search

<table>
<thead>
<tr>
<th>Edge</th>
<th>Index 1</th>
<th>Index 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>e_1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>e_2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>e_3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>e_4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>e_5</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Why Mine Closed Graph Patterns?

- Challenge: An n-edge frequent graph may have 2^n subgraphs
- Motivation: Explore *closed frequent subgraphs* to handle graph pattern explosion problem
- A frequent graph G is *closed* if there exists no supergraph of G that carries the same support as G
- *Lossless compression*: Does not contain non-closed graphs, but still ensures that the mining result is complete
- Algorithm CloseGraph: Mines closed graph patterns directly

If this subgraph is *closed* in the graph dataset, it implies that none of its frequent super-graphs carries the same support.
CloseGraph: Directly Mining Closed Graph Patterns

- CloseGraph: Mining closed graph patterns by extending gSpan (Yan & Han, KDD’03)

At what condition can we stop searching their children, i.e., early termination?

- Suppose G and G₁ are frequent, and G is a subgraph of G₁
- If in any part of the graph in the dataset where G occurs, G₁ also occurs, then we need not grow G (except some special, subtle cases), since none of G’s children will be closed except those of G₁
Experiment and Performance Comparison

- The AIDS antiviral screen compound dataset from NCI/NIH
- The dataset contains 43,905 chemical compounds
- Discovered patterns: The smaller minimum support, the bigger and more interesting subgraph patterns discovered

![Chemical structures with minimum support percentages](image)

of Patterns: Frequent vs. Closed

<table>
<thead>
<tr>
<th>Minimum support</th>
<th>Frequent graphs</th>
<th>Closed frequent graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Runtime: Frequent vs. Closed

![Runtime graph](image)
Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
Pattern Mining Application: Software Bug Detection

- Mining rules from source code
 - Bugs as deviant behavior (e.g., by statistical analysis)
 - Mining programming rules (e.g., by frequent itemset mining)
 - Mining function precedence protocols (e.g., by frequent subsequence mining)
 - Revealing neglected conditions (e.g., by frequent itemset/subgraph mining)
- Mining rules from revision histories
 - By frequent itemset mining
- Mining copy-paste patterns from source code
 - Find copy-paste bugs (e.g., CP-Miner [Li et al., OSDI’04]) (to be discussed here)
Application Example: Mining Copy-and-Paste Bugs

- Copy-pasting is common
 - 12% in Linux file system
 - 19% in X Window system
- Copy-pasted code is error-prone
- Mine “forget-to-change” bugs by sequential pattern mining
 - Build a sequence database from source code
 - Mining sequential patterns
 - Finding mismatched identifier names & bugs

Courtesy of Yuanyuan Zhou@UCSD

```c
void __init prom_meminit(void)
{
    ...... 
    for (i=0; i<n; i++) {
        total[i].adr = list[i].addr; 
        total[i].bytes = list[i].size; 
        total[i].more = &total[i+1]; 
    }
    ...... 

    for (i=0; i<n; i++) {
        taken[i].adr = list[i].addr; 
        taken[i].bytes = list[i].size; 
        taken[i].more = &total[i+1]; 
    }

(Simplified example from linux-2.6.6/arch/sparc/prom/memory.c)
```

Code copy-and-pasted but forget to change “id”!
Building Sequence Database from Source Code

- Statement → number
- Tokenize each component
 - Different operators, constants, key words → different tokens
 - Same type of identifiers → same token
- Program → A long sequence
 - Cut the long sequence by blocks

Map a statement to a number

Tokenize

Hash

<table>
<thead>
<tr>
<th>Hash values</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>71</td>
</tr>
</tbody>
</table>

for (i=0; i<n; i++) {
 total[i].adr = list[i].addr;
 total[i].bytes = list[i].size;
 total[i].more = &total[i+1];
}

...

for (i=0; i<n; i++) {
 taken[i].adr = list[i].addr;
 taken[i].bytes = list[i].size;
 taken[i].more = &total[i+1];
}

Final sequence DB:
(65) (16, 16, 71)
... (65) (16, 16, 71)

Courtesy of Yuanyuan Zhou@UCSD
Sequential Pattern Mining & Detecting “Forget-to-Change” Bugs

- Modification to the sequence pattern mining algorithm
 - Constrain the max gap
- Composing Larger Copy-Pasted Segments
 - Combine the neighboring copy-pasted segments repeatedly
- Find conflicts: Identify names that cannot be mapped to the corresponding ones
 - E.g., 1 out of 4 “total” is unchanged, unchanged ratio = 0.25
 - If \(0 < \text{unchanged ratio} < \text{threshold}\), then report it as a bug
- CP-Miner reported many C-P bugs in Linux, Apache, ... out of millions of LOC (lines of code)

Courtesy of Yuanyuan Zhou@UCSD
Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary
Summary: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
 - Mining Multiple-Level Associations
 - Mining Multi-Dimensional Associations
 - Mining Quantitative Associations
 - Mining Negative Correlations
 - Mining Compressed and Redundancy-Aware Patterns

- Sequential Pattern Mining
 - Sequential Pattern and Sequential Pattern Mining
 - GSP: Apriori-Based Sequential Pattern Mining
 - SPADE: Sequential Pattern Mining in Vertical Data Format
 - PrefixSpan: Sequential Pattern Mining by Pattern-Growth
 - CloSpan: Mining Closed Sequential Patterns

- Constraint-Based Frequent Pattern Mining
 - Why Constraint-Based Mining?
 - Constrained Mining with Pattern Anti-Monotonicity
 - Constrained Mining with Pattern Monotonicity
 - Constrained Mining with Data Anti-Monotonicity
 - Constrained Mining with Succinct Constraints
 - Constrained Mining withConvertible Constraints
 - Handling Multiple Constraints
 - Constraint-Based Sequential-Pattern Mining

- Graph Pattern Mining
 - Graph Pattern and Graph Pattern Mining
 - Apriori-Based Graph Pattern Mining Methods
 - gSpan: A Pattern-Growth-Based Method
 - CloseGraph: Mining Closed Graph Patterns

- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
References: Mining Diverse Patterns

- R. Srikant and R. Agrawal, “Mining generalized association rules”, VLDB'95
- D. Xin, J. Han, X. Yan and H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60(1): 5-29, 2007
- D. Xin, H. Cheng, X. Yan, and J. Han, "Extracting Redundancy-Aware Top-K Patterns", KDD'06
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007
- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, “Mining Colossal Frequent Patterns by Core Pattern Fusion”, ICDE'07
References: Sequential Pattern Mining

- J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, "Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach", IEEE TKDE, 16(10), 2004
- X. Yan, J. Han, and R. Afshar, “CloSpan: Mining Closed Sequential Patterns in Large Datasets”, SDM'03
References: Constraint-Based Frequent Pattern Mining

- R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang, “Exploratory mining and pruning optimizations of constrained association rules”, SIGMOD’98
- G. Grahne, L. Lakshmanan, and X. Wang, “Efficient mining of constrained correlated sets”, ICDE'00
- J. Pei, J. Han, and L. V. S. Lakshmanan, “Mining Frequent Itemsets with Convertible Constraints”, ICDE'01
- J. Pei, J. Han, and W. Wang, “Mining Sequential Patterns with Constraints in Large Databases”, CIKM'02
- F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, “ExAnte: Anticipated Data Reduction in Constrained Pattern Mining”, PKDD'03
- F. Zhu, X. Yan, J. Han, and P. S. Yu, “gPrune: A Constraint Pushing Framework for Graph Pattern Mining”, PAKDD'07
References: Graph Pattern Mining

- C. Borgelt and M. R. Berthold, Mining molecular fragments: Finding relevant substructures of molecules, ICDM'02
- J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of isomorphism, ICDM'03
- A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data, PKDD'00
- M. Kuramochi and G. Karypis. Frequent subgraph discovery, ICDM'01
- S. Nijssen and J. Kok. A Quickstart in Frequent Structure Mining can Make a Difference. KDD'04
- N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from semistructured data, ICDM'02
- X. Yan and J. Han, gSpan: Graph-Based Substructure Pattern Mining, ICDM'02
- X. Yan and J. Han, CloseGraph: Mining Closed Frequent Graph Patterns, KDD'03
- X. Yan, P. S. Yu, J. Han, Graph Indexing: A Frequent Structure-based Approach, SIGMOD'04
- X. Yan, P. S. Yu, and J. Han, Substructure Similarity Search in Graph Databases, SIGMOD'05