Contents

3 Data Preprocessing

3.1 Data Preprocessing: An Overview . . .. ... .....
3.1.1 Data Quality: Why Preprocess the Data? . . . .
3.1.2 Major Tasks in Data Preprocessing . . . . . . . .

3.2 Data Cleaning . . . . .. ... ... ... ... ...
3.2.1 Missing Values . . .. ... ... ... ......
322 NoisyData . .. ... ... ... .........
3.2.3 Data Cleaning as a Process . . . . .. ... ...

3.3 Data Integration . . . . ... ... ... ... ...
3.3.1 The Entity Identification Problem . .. .. ...
3.3.2 Redundancy and Correlation Analysis . . . . . .
3.3.3 Tuple Duplication . . ... .. ... .......
3.3.4 Detection and Resolution of Data Value Conflicts

3.4 DataReduction . . . ... ... ... ...
3.4.1 Overview of Data Reduction Strategies . . . . .
3.4.2 Wavelet Transforms . . . . ... ... ......
3.4.3 Principal Components Analysis . . . . . .. ...
3.4.4 Attribute Subset Selection . . . . . ... ... ..

3.4.5 Regression and Log-Linear Models: Parametric Data Re-

duction . . .. ... .o

3.4.6 Histograms . . .. .. ... ... ... ...,
3.4.7 Clustering . . . .. ... ... ...
348 Sampling .. ... ... ... ... ..
3.4.9 Data Cube Aggregation . . . ... ... .....

3.5 Data Transformation and Data Discretization . . . . . .
3.5.1 Overview of Data Transformation Strategies . . .
3.5.2 Data Transformation by Normalization . . . . .
3.5.3 Discretization by Binning . . . . ... ... ...
3.5.4 Discretization by Histogram Analysis. . . . . . .

3.5.5 Discretization by Cluster, Decision Tree, and Correlation

Analyses. . . . . . . ..o

3.5.6  Concept Hierarchy Generation for Nominal Data

3.6 Summary . . ... ...
3.7 Exercises . ... .. ... ...



CONTENTS

3.8 Bibliographic Notes . . . . . . . . . .. ... ... ... ... .. 45



Chapter 3

Data Preprocessing

Today’s real-world databases are highly susceptible to noisy, missing, and inconsistent data
due to their typically huge size (often several gigabytes or more) and their
likely origin from multiple, heterogenous sources. Low-quality data will lead
to low-quality mining results. “How can the data be preprocessed in order to
help improve the quality of the data and, consequently, of the mining results?
How can the data be preprocessed so as to improve the efficiency and ease of the
mining process?”

There are a number of data preprocessing techniques. Data cleaning can be
applied to remove noise and correct inconsistencies in the data. Data integration
merges data from multiple sources into a coherent data store, such as a data
warehouse. Data reduction can reduce the data size by aggregating, eliminating
redundant features, or clustering, for instance. Data transformations, such as
normalization, may be applied, where data are scaled to fall within a smaller
range like 0.0 to 1.0. This can improve the accuracy and efficiency of mining
algorithms involving distance measurements. These techniques are not mutu-
ally exclusive; they may work together. For example, data cleaning can involve
transformations to correct wrong data, such as by transforming all entries for
a date field to a common format. In Chapter 2, we learned about the different
attribute types and how to use basic statistical descriptions to study charac-
teristics of the data. These can help identify erroneous values and outliers,
which will be useful in the data cleaning and integration steps. Data processing
techniques, when applied before mining, can substantially improve the overall
quality of the patterns mined and/or the time required for the actual mining.

In this chapter, we introduce the basic concepts of data preprocessing in
Section 3.1. The methods for data preprocessing are organized into the following
categories: data cleaning (Section 3.2), data integration (Section 3.3), data
reduction (Section 3.4), and data transformation (Section 3.5).

3



4 CHAPTER 3. DATA PREPROCESSING

3.1 Data Preprocessing: An Overview

This section presents an overview of data preprocessing. Section 3.1.1 illustrates
the many elements defining data quality. This provides the incentive behind
data preprocessing. Section 3.1.2 outlines the major tasks in data preprocessing.

3.1.1 Data Quality: Why Preprocess the Data?

Data has quality if it satisfies the requirements of its intended use. There are
many factors comprising data quality. These include: accuracy, completeness,
consistency, timeliness, believability, and interpretability.

Imagine that you are a manager at AllElectronics and have been charged
with analyzing the company’s data with respect to the sales at your branch. You
immediately set out to perform this task. You carefully inspect the company’s
database and data warehouse, identifying and selecting the attributes or dimen-
sions to be included in your analysis, such as item, price, and units_sold. Alas!
You notice that several of the attributes for various tuples have no recorded
value. For your analysis, you would like to include information as to whether
each item purchased was advertised as on sale, yet you discover that this in-
formation has not been recorded. Furthermore, users of your database system
have reported errors, unusual values, and inconsistencies in the data recorded for
some transactions. In other words, the data you wish to analyze by data mining
techniques are incomplete (lacking attribute values or certain attributes of inter-
est, or containing only aggregate data), inaccurate or noisy (containing errors,
or values that deviate from the expected), and inconsistent (e.g., containing
discrepancies in the department codes used to categorize items). Welcome to
the real world!

This scenario illustrates three of the elements defining data quality - accu-
racy, completeness, and consistency. Inaccurate, incomplete, and inconsis-
tent data are commonplace properties of large real-world databases and data
warehouses. There are many possible reasons for inaccurate data (having in-
correct attribute values). The data collection instruments used may be faulty.
There may have been human or computer errors occurring at data entry. Users
may purposely submit incorrect data values for mandatory fields when they do
not wish to submit personal information, e.g., by choosing the default value
‘January 1’ displayed for birthday. (This is known as disguised missing data.)
Errors in data transmission can also occur. There may be technology limita-
tions, such as limited buffer size for coordinating synchronized data transfer
and consumption. Incorrect data may also result from inconsistencies in nam-
ing conventions or data codes used, or inconsistent formats for input fields, such
as date. Duplicate tuples also require data cleaning.

Incomplete data can occur for a number of reasons. Attributes of interest
may not always be available, such as customer information for sales transaction
data. Other data may not be included simply because they were not considered
important at the time of entry. Relevant data may not be recorded due to
a misunderstanding, or because of equipment malfunctions. Data that were



3.1. DATA PREPROCESSING: AN OVERVIEW 5

inconsistent with other recorded data may have been deleted. Furthermore, the
recording of the history or modifications to the data may have been overlooked.
Missing data, particularly for tuples with missing values for some attributes,
may need to be inferred.

Recall that data quality depends on the intended use of the data. Two
different users may have very different assessments of the quality of a given
database. For example, a marketing analyst may need to access the database
mentioned above for a list of customer addresses. Some of the addresses are
outdated or incorrect, yet overall, 80% of the addresses are accurate. The
marketing analyst considers this to be a large customer database for target
marketing purposes and is pleased with the accuracy of the database, although,
as sales manager, you found the data inaccurate.

Timeliness also affects data quality. Suppose that you are overseeing the
distribution of monthly sales bonuses to the top sales representatives at AllFElec-
tronics. Several sales representatives, however, fail to submit their sales records
on time at the end of the month. There are also a number of corrections and
adjustments that flow in after the month’s end. For a period of time following
each month, the data stored in the database is incomplete. However, once all
of the data is received, it is correct. The fact that the month-end data is not
updated in a timely fashion has a negative impact on the data quality.

Two other factors affecting data quality are believability and interpretabil-
ity. Believability reflects how much the data are trusted by users, while inter-
pretability reflects how easy the data are understood. Suppose that a database,
at one point, had several errors, all of which have since been corrected. The past
errors, however, had caused many problems for users in the sales department,
and so they no longer trust the data. The data also use many accounting codes,
which the sales department does not know how to interpret. Even though such
a database is now accurate, complete, consistent, and timely, users from the
sales department may regard it as of low quality due to poor believability and
interpretability.

3.1.2 Major Tasks in Data Preprocessing

In this section, we look at the major steps involved in data preprocessing,
namely, data cleaning, data integration, data reduction, and data transforma-
tion.

Data cleaning routines work to “clean” the data by filling in missing values,
smoothing noisy data, identifying or removing outliers, and resolving inconsis-
tencies. If users believe the data are dirty, they are unlikely to trust the results
of any data mining that has been applied to it. Furthermore, dirty data can
cause confusion for the mining procedure, resulting in unreliable output. Al-
though most mining routines have some procedures for dealing with incomplete
or noisy data, they are not always robust. Instead, they may concentrate on
avoiding overfitting the data to the function being modeled. Therefore, a useful
preprocessing step is to run your data through some data cleaning routines.
Section 3.2 discusses methods for cleaning up your data.



6 CHAPTER 3. DATA PREPROCESSING

Getting back to your task at AllFlectronics, suppose that you would like
to include data from multiple sources in your analysis. This would involve
integrating multiple databases, data cubes, or files, that is, data integration.
Yet some attributes representing a given concept may have different names in
different databases, causing inconsistencies and redundancies. For example, the
attribute for customer identification may be referred to as customer_id in one
data store and cust_id in another. Naming inconsistencies may also occur for
attribute values. For example, the same first name could be registered as “Bill”
in one database, but “William” in another, and “B.” in the third. Furthermore,
you suspect that some attributes may be inferred from others (e.g., annual
revenue). Having a large amount of redundant data may slow down or confuse
the knowledge discovery process. Clearly, in addition to data cleaning, steps
must be taken to help avoid redundancies during data integration. Typically,
data cleaning and data integration are performed as a preprocessing step when
preparing the data for a data warehouse. Additional data cleaning can be
performed to detect and remove redundancies that may have resulted from data
integration.

“Hmmm,” you wonder, as you consider your data even further. “The data
set I have selected for analysis is HUGE, which is sure to slow down the mining
process. Is there a way I can reduce the size of my data set without jeopardizing
the data mining results?” Data reduction obtains a reduced representation
of the data set that is much smaller in volume, yet produces the same (or
almost the same) analytical results. Data reduction strategies include dimen-
sionality reduction and numerosity reduction. In dimensionality reduction,
data encoding schemes are applied so as to obtain a reduced or “compressed”
representation of the original data. Examples include data compression tech-
niques (such as wavelet transforms and principal components analysis) as well
as attribute subset selection (e.g., removing irrelevant attributes), and attribute
construction (e.g., where a small set of more useful attributes is derived from
the original set). In numerosity reduction, the data are replaced by alter-
native, smaller representations using parametric models (such as regression or
log-linear models) or nonparametric models (such as with histograms, clusters,
sampling, or data aggregation). Data reduction is the topic of Section 3.4.

Getting back to your data, you have decided, say, that you would like to
use a distance-based mining algorithm for your analysis, such as neural net-
works, nearest-neighbor classifiers, or clustering.! Such methods provide better
results if the data to be analyzed have been normalized, that is, scaled to a
smaller range such as [0.0, 1.0]. Your customer data, for example, contain the
attributes age and annual salary. The annual salary attribute usually takes
much larger values than age. Therefore, if the attributes are left unnormal-
ized, the distance measurements taken on annual salary will generally outweigh
distance measurements taken on age. Discretization and concept hierarchy gen-
eration can also be useful, where raw data values for attributes are replaced

I Neural networks and nearest-neighbor classifiers are described in Chapter 8, and clustering
is discussed in Chapters 10 and 11.



3.1. DATA PREPROCESSING: AN OVERVIEW 7

o

095‘30 \\ | //

%o Q
Data cleaning ~ —
B
— 7T\
. /TN
Data integration M~
~—

Data transformation -2,32,100, 59,48 —>» —0.02, 0.32, 1.00, 0.59, 0.48
Data reduction attributes attributes
Al A2 A3 .. Al26 " Al A3 .. All5
w T1 gm
§ T2 S T4
S T3 —>Z
< <
2 T4 & Ti456
g .
T2000

Figure 3.1: Forms of data preprocessing. NOTE to editor: Figure needs to be
redone so that data reduction comes before data transformation. Thanks.

by ranges or higher conceptual levels. For example, raw values for age may be
replaced by higher-level concepts, such as youth, adult, or senior. Discretization
and concept hierarchy generation are powerful tools for data mining in that they
allow the mining of data at multiple levels of abstraction. Normalization, data
discretization, and concept hierarchy generation are forms of data transfor-
mation. You soon realize such data transformation operations are additional
data preprocessing procedures that would contribute toward the success of the
mining process. Data integration and data discretization are discussed in
Sections 3.5.

Figure 3.1 summarizes the data preprocessing steps described here. Note
that the above categorization is not mutually exclusive. For example, the re-
moval of redundant data may be seen as a form of data cleaning, as well as data
reduction.

In summary, real-world data tend to be dirty, incomplete, and inconsistent.
Data preprocessing techniques can improve the quality of the data, thereby helping
to improve the accuracy and efficiency of the subsequent mining process. Data pre-



8 CHAPTER 3. DATA PREPROCESSING

processing is an important step in the knowledge discovery process, because quality
decisions must be based on quality data. Detecting data anomalies, rectifying them
early, and reducing the data to be analyzed can lead to huge payoffs for decision
making.

3.2 Data Cleaning

Real-world data tend to be incomplete, noisy, and inconsistent. Data cleaning
(or data cleansing) routines attempt to fill in missing values, smooth out noise
while identifying outliers, and correct inconsistencies in the data. In this section,
you will study basic methods for data cleaning. Section 3.2.1 looks at ways
of handling missing values. Section 3.2.2 explains data smoothing techniques.
Section 3.2.3 discusses approaches to data cleaning as a process.

3.2.1 Missing Values

Imagine that youneed to analyze AllElectronics sales and customer data. You note
that many tuples have no recorded value for several attributes, such as customer
income. How can you go about filling in the missing values for this attribute? Let’s
look at the following methods:

1. Ignore the tuple: This is usually done when the class label is missing
(assuming the mining task involves classification). This method is not
very effective, unless the tuple contains several attributes with missing
values. It is especially poor when the percentage of missing values per
attribute varies considerably. By ignoring the tuple, we do not make use
of the remaining attributes values in the tuple. Such data could have been
useful to the task at hand.

2. Fill in the missing value manually: In general, this approach is time-
consuming and may not be feasible given a large data set with many
missing values.

3. Use a global constant to fill in the missing value: Replace all missing
attribute values by the same constant, such as a label like “Unknown” or
—oo. If missing values are replaced by, say, “Unknown,” then the mining
program may mistakenly think that they form an interesting concept, since
they all have a value in common—that of “Unknown.” Hence, although
this method is simple, it is not foolproof.

4. Use a measure of central tendency for the attribute (such as
the mean or median) to fill in the missing value: Chapter 2 dis-
cussed measures of central tendency, which indicate the “middle” value of
a data distribution. For normal (symmetric) data distributions, the mean
can be used, while skewed data distribution should employ the median
(Section 2.2). For example, suppose that the data distribution regarding



3.2. DATA CLEANING 9

the income of AllElectronics customers is symmetric and that the average
income is $56,000. Use this value to replace the missing value for income.

5. Use the attribute mean or median for all samples belonging to
the same class as the given tuple: For example, if classifying cus-
tomers according to credit_risk, we may replace the missing value with
the average income value for customers in the same credit risk category
as that of the given tuple. If the data distribution for a given class is
skewed, the median value is a better choice.

6. Use the most probable value to fill in the missing value: This may
be determined with regression, inference-based tools using a Bayesian for-
malism, or decision tree induction. For example, using the other customer
attributes in your data set, you may construct a decision tree to predict
the missing values for income. Decision trees and Bayesian inference are
described in detail in Chapters 8 and 9, respectively, while regression is
introduced in Section 3.4.5.

Methods 3 to 6 bias the data. The filled-in value may not be correct. Method

6, however, is a popular strategy. In comparison to the other methods, it uses
the most information from the present data to predict missing values. By con-
sidering the values of the other attributes in its estimation of the missing value
for income, there is a greater chance that the relationships between income and
the other attributes are preserved.

It is important to note that, in some cases, a missing value may not imply
an error in the data! For example, when applying for a credit card, candidates
may be asked to supply their driver’s license number. Candidates who do not
have a driver’s license may naturally leave this field blank. Forms should allow
respondents to specify values such as “not applicable”. Software routines may
also be used to uncover other null values, such as “don’t know”, “?”, or “none”.
Ideally, each attribute should have one or more rules regarding the null condi-
tion. The rules may specify whether or not nulls are allowed, and/or how such
values should be handled or transformed. Fields may also be intentionally left
blank if they are to be provided in a later step of the business process. Hence,
although we can try our best to clean the data after it is seized, good design
of databases and of data entry procedures should help minimize the number of
missing values or errors in the first place.

3.2.2 Noisy Data

“What is noise?” Noise is a random error or variance in a measured variable.
In Chapter 2, we saw how some basic statistical description techniques (such as
boxplots and scatter plots) and methods of data visualization can be used to
identify outliers, which may represent noise. Given a numeric attribute such as,
say, price, how can we “smooth” out the data to remove the noise? Let’s look
at the following data smoothing techniques:

1. Binning: Binning methods smooth a sorted data value by consulting its
“neighborhood,” that is, the values around it. The sorted values are dis-



10

CHAPTER 3. DATA PREPROCESSING
Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15
Bin 2: 21, 21, 24
Bin 3: 25, 28, 34

Smoothing by bin means:

Bin1: 9,9, 9
Bin 2: 22, 22, 22
Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15
Bin 2: 21, 21, 24
Bin 3: 25, 25, 34

Figure 3.2: Binning methods for data smoothing.

tributed into a number of “buckets,” or bins. Because binning methods
consult the neighborhood of values, they perform local smoothing. Fig-
ure 3.2 illustrates some binning techniques. In this example, the data for
price are first sorted and then partitioned into equal-frequency bins of size
3 (i.e., each bin contains three values). In smoothing by bin means,
each value in a bin is replaced by the mean value of the bin. For example,
the mean of the values 4, 8, and 15 in Bin 1 is 9. Therefore, each original
value in this bin is replaced by the value 9. Similarly, smoothing by
bin medians can be employed, in which each bin value is replaced by
the bin median. In smoothing by bin boundaries, the minimum and
maximum values in a given bin are identified as the bin boundaries. Each
bin value is then replaced by the closest boundary value. In general, the
larger the width, the greater the effect of the smoothing. Alternatively,
bins may be equal-width, where the interval range of values in each bin is
constant. Binning is also used as a discretization technique and is further
discussed in Section 3.5.

. Regression: Data smoothing can also be done by conforming data values

to a function, a technique known as regression. Linear regression involves
finding the “best” line to fit two attributes (or variables), so that one
attribute can be used to predict the other. Multiple linear regression
is an extension of linear regression, where more than two attributes are
involved and the data are fit to a multidimensional surface. Regression is
further described in Section 3.4.5.

3. Outlier analysis: Outliers may be detected by clustering, for example,



3.2. DATA CLEANING 11

Figure 3.3: A 2-D plot of customer data with respect to customer locations
in a city, showing three data clusters. Each cluster centroid is marked with a
“4+7 representing the average point in space for that cluster. Outliers may be
detected as values that fall outside of the sets of clusters.

where similar values are organized into groups, or “clusters.” Intuitively,
values that fall outside of the set of clusters may be considered outliers
(Figure 3.3). Chapter 11 is dedicated to the topic of outlier analysis.

Many methods for data smoothing are also methods for data discretization
(a form of data transformation) and data reduction. For example, the binning
techniques described above reduce the number of distinct values per attribute.
This acts as a form of data reduction for logic-based data mining methods, such
as decision tree induction, which repeatedly make value comparisons on sorted
data. Concept hierarchies are a form of data discretization that can also be
used for data smoothing. A concept hierarchy for price, for example, may map
real price values into inexpensive, moderately_priced, and expensive, thereby
reducing the number of data values to be handled by the mining process. Data
discretization is discussed in Section 3.5. Some methods of classification, such
as neural networks, have built-in data smoothing mechanisms. Classification is
the topic of Chapters 8 and 9.



12 CHAPTER 3. DATA PREPROCESSING

3.2.3 Data Cleaning as a Process

Missing values, noise, and inconsistencies contribute to inaccurate data. So far,
we have looked at techniques for handling missing data and for smoothing data.
“But data cleaning is a big job. What about data cleaning as a process? How
exactly does one proceed in tackling this task? Are there any tools out there to
help?”

The first step in data cleaning as a process is discrepancy detection. Discrepan-
cies can be caused by several factors, including poorly designed data entry forms
that have many optional fields, human error in data entry, deliberate errors (e.g.,
respondents not wanting to divulge information about themselves), and data decay
(e.g., outdated addresses). Discrepancies may also arise from inconsistent datarep-
resentations and the inconsistent use of codes. Errors in instrumentation devices
that record data, and system errors, are another source of discrepancies. Errors can
also occur when the data are (inadequately) used for purposes other than originally
intended. There may also be inconsistencies due to data integration (e.g., where a
given attribute can have different names in different databases).?

“So, how can we proceed with discrepancy detection?” As a starting point,
use any knowledge you may already have regarding properties of the data. Such
knowledge or “data about data” is referred to as metadata. This is where we
can make use of the knowledge we gained about our data in Chapter 2. For
example, what are the data type and domain of each attribute? What are the
acceptable values for each attribute? The basic statistical data descriptions dis-
cussed in Section 2.2 are useful here to grasp data trends and identify anomalies.
For example, find the mean, median, and mode values. Are the data symmetric
or skewed? What is the range of values? Do all values fall within the expected
range? What is the standard deviation of each attribute? Values that are more
than two standard deviations away from the mean for a given attribute may
be flagged as potential outliers. Are there any known dependencies between
attributes? In this step, you may write your own scripts and/or use some of
the tools that we discuss further below. From this, you may find noise, outliers,
and unusual values that need investigation.

As adata analyst, you should be on the lookout for the inconsistent use of codes
and any inconsistent datarepresentations (such as “2010/12/25” and “25/12/2010”
for date). Field overloading is another source of errors that typically results
when developers squeeze new attribute definitions into unused (bit) portions of
already defined attributes (e.g., using an unused bit of an attribute whose value
range uses only, say, 31 out of 32 bits).

The data should also be examined regarding unique rules, consecutive rules,
and null rules. A unique rule says that each value of the given attribute must
be different from all other values for that attribute. A consecutive rule says
that there can be no missing values between the lowest and highest values for the
attribute, and that all values must also be unique (e.g., as in check numbers).
A null rule specifies the use of blanks, question marks, special characters, or

2Data integration and the removal of redundant data that can result from such integration
are further described in Section 3.3.



3.2. DATA CLEANING 13

other strings that may indicate the null condition (e.g., where a value for a
given attribute is not available), and how such values should be handled. As
mentioned in Section 3.2.1, reasons for missing values may include (1) the person
originally asked to provide a value for the attribute refuses and/or finds that
the information requested is not applicable (e.g., a license-number attribute
left blank by nondrivers); (2) the data entry person does not know the correct
value; or (3) the value is to be provided by a later step of the process. The null
rule should specify how to record the null condition, for example, such as to
store zero for numeric attributes, a blank for character attributes, or any other
conventions that may be in use (such as that entries like “don’t know” or “?”
should be transformed to blank).

There are a number of different commercial tools that can aid in the step of
discrepancy detection. Data scrubbing tools use simple domain knowledge
(e.g., knowledge of postal addresses, and spell-checking) to detect errors and
make corrections in the data. These tools rely on parsing and fuzzy matching
techniques when cleaning data from multiple sources. Data auditing tools
find discrepancies by analyzing the data to discover rules and relationships, and
detecting data that violate such conditions. They are variants of data mining
tools. For example, they may employ statistical analysis to find correlations,
or clustering to identify outliers. They may also use the basic statistical data
descriptions presented in Section 2.2.

Some data inconsistencies may be corrected manually using external refer-
ences. For example, errors made at data entry may be corrected by performing
a paper trace. Most errors, however, will require data transformations. That is,
once we find discrepancies, we typically need to define and apply (a series of)
transformations to correct them.

Commercial tools can assist in the data transformation step. Data mi-
gration tools allow simple transformations to be specified, such as to replace
the string “gender” by “sex”. ETL (extraction/transformation/loading)
tools allow users to specify transforms through a graphical user interface (GUT).
These tools typically support only a restricted set of transforms so that, often,
we may also choose to write custom scripts for this step of the data cleaning
process.

The two-step process of discrepancy detection and data transformation (to
correct discrepancies) iterates. This process, however, is error-prone and time-
consuming. Some transformations may introduce more discrepancies. Some
nested discrepancies may only be detected after others have been fixed. For
example, a typo such as “20010” in a year field may only surface once all date
values have been converted to a uniform format. Transformations are often
done as a batch process while the user waits without feedback. Only after
the transformation is complete can the user go back and check that no new
anomalies have been created by mistake. Typically, numerous iterations are
required before the user is satisfied. Any tuples that cannot be automatically
handled by a given transformation are typically written to a file without any
explanation regarding the reasoning behind their failure. As a result, the entire
data cleaning process also suffers from a lack of interactivity.



14 CHAPTER 3. DATA PREPROCESSING

New approaches to data cleaning emphasize increased interactivity. Potter’s
Wheel, for example, is a publicly available data cleaning tool that integrates dis-
crepancy detection and transformation. Users gradually build a series of trans-
formations by composing and debugging individual transformations, one step at a
time, on a spreadsheet-like interface. The transformations can be specified graphi-
cally or by providing examples. Results are shown immediately on the records that
are visible on the screen. The user can choose to undo the transformations, so that
transformations that introduced additional errors can be “erased.” The tool
performs discrepancy checking automatically in the background on the latest
transformed view of the data. Users can gradually develop and refine transfor-
mations as discrepancies are found, leading to more effective and efficient data
cleaning.

Another approach to increased interactivity in data cleaning is the develop-
ment of declarative languages for the specification of data transformation opera-
tors. Such work focuses on defining powerful extensions to SQL and algorithms
that enable users to express data cleaning specifications efficiently.

As we discover more about the data, it is important to keep updating the
metadata to reflect this knowledge. This will help speed up data cleaning on
future versions of the same data store.

3.3 Data Integration

Data mining often requires data integration—the merging of data from multiple
data stores. Careful integration can help reduce and avoid redundancies and
inconsistencies in the resulting data set. This can help improve the accuracy
and speed of the subsequent mining process.

The semantic heterogeneity and structure of data pose great challenges in
data integration. How can we match schema and objects from different sources?
This is the essence of the entity identification problem, described in Section 3.3.1.
Are any attributes correlated? Section 3.3.2 presents correlation tests for nu-
meric and nominal data. Tuple duplication is described in Section 3.3.3. Finally,
Section 3.3.4 touches on the detection and resolution of data value conflicts.

3.3.1 The Entity Identification Problem

It is likely that your data analysis task will involve data integration, which
combines data from multiple sources into a coherent data store, as in data
warehousing. These sources may include multiple databases, data cubes, or flat
files.

There are a number of issues to consider during data integration. Schema
integration and object matching can be tricky. How can equivalent real-world
entities from multiple data sources be matched up? This is referred to as the
entity identification problem. For example, how can the data analyst or
the computer be sure that customer_id in one database and cust_number in
another refer to the same attribute? Examples of metadata for each attribute



3.3. DATA INTEGRATION 15

include the name, meaning, data type, and range of values permitted for the
attribute, and null rules for handling blank, zero, or null values (Section 3.2).
Such metadata can be used to help avoid errors in schema integration. The
metadata may also be used to help transform the data (e.g., where data codes
for pay_type in one database may be “H” and “S”, and I and 2 in another).
Hence, this step also relates to data cleaning, as described earlier.

When matching attributes from one database to another during integration,
special attention must be paid to the structure of the data. This is to ensure that
any attribute functional dependencies and referential constraints in the source
system match those in the target system. For example, in one system, a discount
may be applied to the order, whereas in another system it is applied to each
individual line item within the order. If this is not caught before integration,
items in the target system may be improperly discounted.

3.3.2 Redundancy and Correlation Analysis

Redundancy is another important issue in data integration. An attribute (such
as annual revenue, for instance) may be redundant if it can be “derived” from
another attribute or set of attributes. Inconsistencies in attribute or dimension
naming can also cause redundancies in the resulting data set.

Some redundancies can be detected by correlation analysis. Given two
attributes, such analysis can measure how strongly one attribute implies the
other, based on the available data. For nominal data, we use the x? (chi-
square) test. For numeric attributes, we can use the correlation coefficient and
covariance, both of which access how one attribute’s values vary with those of
another.

x? Correlation Test for Nominal Data

For nominal data, a correlation relationship between two attributes, A and B,
can be discovered by a x? (chi-square) test. Suppose A has ¢ distinct values,
namely aj,as,...a.. B has r distinct values, namely by, b2,...b,.. The data
tuples described by A and B can be shown as a contingency table, with the
¢ values of A making up the columns and the r values of B making up the
rows. Let (A;, B;) denote the joint event that attribute A takes on value a; and
attribute B takes on value b;, that is, where (A = a;, B = b;). Each and every
possible (4;, B;) joint event has its own cell (or slot) in the table. The x? value
(also known as the Pearson x? statistic) is computed as:

c kA (01 _ 61)2
=) (3.1)
i=1 j=1 v

where 0;; is the observed frequency (i.e., actual count) of the joint event (A;, B;)
and e;; is the expected frequency of (A;, B;), which can be computed as

e = count(A = a;) x count(B = bj), (3.2)

n




16 CHAPTER 3. DATA PREPROCESSING

Table 3.1: A 2 x 2 contingency table for the data
of Example 2.1. Are gender and preferred_Reading

correlated?
male female Total
fiction 250 (90) 200 (360) 450
non_fiction 50 (210) 1000 (840) 1050
Total 300 1200 1500

where n is the number of data tuples, count(A = a;) is the number of tuples
having value a; for A, and count(B = b;) is the number of tuples having value
b; for B. The sum in Equation (3.1) is computed over all of the r x ¢ cells. Note
that the cells that contribute the most to the x? value are those whose actual
count is very different from that expected.

The x? statistic tests the hypothesis that A and B are independent, that is,
there is no correlation between them. The test is based on a significance level,
with (r — 1) x (¢ — 1) degrees of freedom. We will illustrate the use of this
statistic in an example below. If the hypothesis can be rejected, then we say
that A and B are statistically correlated.

Let’s look at a concrete example.

Example 3.1 Correlation analysis of nominal attributes using y2. Suppose that a
group of 1,500 people was surveyed. The gender of each person was noted. Each
person was polled as to whether their preferred type of reading material was fic-
tion or nonfiction. Thus, we have two attributes, gender and preferred_reading.
The observed frequency (or count) of each possible joint event is summarized
in the contingency table shown in Table 3.1, where the numbers in parentheses
are the expected frequencies. The expected frequencies are calculated based on
the data distribution for both attributes using Equation (3.2).

Using Equation (3.2), we can verify the expected frequencies for each cell.
For example, the expected frequency for the cell (male, fiction) is

count(male) X count(fiction) 300 x 450

_ _ — 90
e n 1500 ’

and so on. Notice that in any row, the sum of the expected frequencies must
equal the total observed frequency for that row, and the sum of the expected
frequencies in any column must also equal the total observed frequency for that
column. Using Equation (3.1) for x? computation, we get

) (250 —90)2 (50 —210)2 (200 — 360)% (1000 — 840)2
X' = + + +
90 210 360 840
—  284.44+121.90 + 71.11 4 30.48 = 507.93.

For this 2 x 2 table, the degrees of freedom are (2 —1)(2 —1) = 1. For 1
degree of freedom, the x2? value needed to reject the hypothesis at the 0.001
significance level is 10.828 (taken from the table of upper percentage points of



3.3. DATA INTEGRATION 17

the x? distribution, typically available from any textbook on statistics). Since
our computed value is above this, we can reject the hypothesis that gender
and preferred_reading are independent and conclude that the two attributes are
(strongly) correlated for the given group of people.

Correlation Coefficient for Numeric Data

For numeric attributes, we can evaluate the correlation between two attributes,
A and B, by computing the correlation coefficient (also known as Pearson’s
product moment coefficient, named after its inventer, Karl Pearson). This

1S
n n

Z(ai — A)(bl — B) Z(aibi) — TLAB

— —
rap =" = : (3.3)
NoOACRB NoAOB

where n is the number of tuples, a; and b; are the respective values of A and B
in tuple i, A and B are the respective mean values of A and B, 04 and op are
the respective standard deviations of A and B (as defined in Section 2.2.8), and
Y (a;b;) is the sum of the AB cross-product (that is, for each tuple, the value for
A is multiplied by the value for B in that tuple). Note that —1 < ry p < +1.
If r4 p is greater than 0, then A and B are positively correlated, meaning that
the values of A increase as the values of B increase. The higher the value, the
stronger the correlation (i.e., the more each attribute implies the other). Hence,
a higher value may indicate that A (or B) may be removed as a redundancy. If
the resulting value is equal to 0, then A and B are independent and there is no
correlation between them. If the resulting value is less than 0, then A and B
are negatively correlated, where the values of one attribute increase as the values
of the other attribute decrease. This means that each attribute discourages the
other. Scatter plots can also be used to view correlations between attributes
(Section 2.2.12). For example, the scatter plots of Figure 2.9 respectively show
positively correlated data and negatively correlated data, while Figure 2.10 dis-
plays uncorrelated data.

Note that correlation does not imply causality. That is, if A and B are
correlated, this does not necessarily imply that A causes B or that B causes A.
For example, in analyzing a demographic database, we may find that attributes
representing the number of hospitals and the number of car thefts in a region
are correlated. This does not mean that one causes the other. Both are actually
causally linked to a third attribute, namely, population.

Covariance of Numeric Data

In probability theory and statistics, correlation and covariance are two similar
measures for assessing how much two attributes change together. Consider two
numeric attributes A and B, and a set of n observations {(a1,b1),..., (an,bs)}.
The mean values of A and B, respectively, are also known as the expected



18 CHAPTER 3. DATA PREPROCESSING

| Time point | AllElectronics | HighTech |

tl 6 20
t2 5 10
t3 4 14
t4 3 )
t5 2 5

Table 3.2: Stock prices for AllElectronics and HighTech.

values on A and B, that is,

and
n

_ b
E(B)=B= 721:1 .
The covariance between A and B is defined as

Cov(A,B) = E(A— A)(B - B)) = > (ai —n/_l)(bi — B)'

(3.4)

If we compare Equation 3.3 for r4 p (correlation coefficient) with Equa-
tion 3.4 for covariance, we see that

rap=— " (3.5)

where 04 and op are the standard deviations of A and B, respectively. It can
also be shown that
Cov(A,B) = E(A- B) — AB. (3.6)

This equation may simplify calculations.

For two attributes A and B that tend to change together, if A is larger than
A (the expected value of A), then B is likely to be larger than B (the expected
value of B). Therefore, the covariance between A and B is positive. On the
other hand, if one of the attributes tends to be above its expected value when
the other attribute is below its expected value, then the covariance of A and B
is negative.

If A and B are independent, that is, they do not have correlation, then E(A-
B) = E(A) - E(B). Therefore, the covariance is Cov(A, B) = E(A- B) — AB =
E(A)-E(B)— AB = 0. However, the converse is not true. Some pairs of random
variables (attributes) may have a covariance of 0 but are not independent. Only
under some additional assumptions (such as that the data follow multivariate
normal distributions) does a covariance of 0 imply independence.

Example 3.2 Covariance analysis of numeric attributes. Consider Table 3.2, which
presents a simplified example of stock prices observed at five time points for



3.3. DATA INTEGRATION 19

AllElectronics and HighTech, some high tech company. If the stocks are affected
by the same industry trends, will their prices rise or fall together?

6+5+4+3+2 20

E(AllElectronics) = 7 5= $4

and
2 1 14 4
E(HighTech) = 0+ 10 +5 TOES % = $10.8.

Thus, using Equation 3.4, we compute

Cov(AllElectroncis, HighTech) = $x2045x1004x1A43x542x5 _ 4 5 1(.8
= 50.2-432=T7.

Therefore, given the positive covariance we can say that stock prices for both
companies rise together.

Variance is a special case of covariance, where the two attributes are identical
(that is, the covariance of an attribute with itself). Variance was discussed in
Chapter 2.

3.3.3 Tuple Duplication

In addition to detecting redundancies between attributes, duplication should
also be detected at the tuple level (e.g., where there are two or more identical
tuples for a given unique data entry case). The use of denormalized tables (often
done to improve performance by avoiding joins) is another source of data redun-
dancy. Inconsistencies often arise between various duplicates, due to inaccurate
data entry or updating some but not all of the occurrences of the data. For
example, if a purchase order database contains attributes for the purchaser’s
name and address instead of a key to this information in a purchaser database,
discrepancies can occur, such as the same purchaser’s name appearing with
different addresses within the purchase order database.

3.3.4 Detection and Resolution of Data Value Conflicts

Data integration also involves the detection and resolution of data value con-
flicts. For example, for the same real-world entity, attribute values from dif-
ferent sources may differ. This may be due to differences in representation,
scaling, or encoding. For instance, a weight attribute may be stored in metric
units in one system and British imperial units in another. For a hotel chain,
the price of rooms in different cities may involve not only different currencies
but also different services (such as free breakfast) and taxes. When exchang-
ing information between schools, each school may have its own curriculum and
grading scheme. One university may adopt a quarter system, offer three courses
on database systems, and assign grades from A+ to F, whereas another may
adopt a semester system, offer two courses on databases, and assign grades from



20 CHAPTER 3. DATA PREPROCESSING

1 to 10. It is difficult to work out precise course-to-grade transformation rules
between the two universities, making information exchange difficult.

Attributes may also differ on the level of abstraction, where an attribute
in one system is recorded at, say, a lower level of abstraction than the “same”
attribute in another. For example, the total_sales in one database may refer to
one branch of All_FElectronics, while an attribute of the same name in another
database may refer to the total sales for All_Electronics stores in a given region.
The topic of discrepancy detection is further described in Section 3.2.3 on data
cleaning as a process.

3.4 Data Reduction

Imagine that you have selected data from the AllFlectronics data warehouse for
analysis. The data set will likely be huge! Complex data analysis and mining
on huge amounts of data can take a long time, making such analysis impractical
or infeasible.

Data reduction techniques can be applied to obtain a reduced representa-
tion of the data set that is much smaller in volume, yet closely maintains the
integrity of the original data. That is, mining on the reduced data set should be
more efficient yet produce the same (or almost the same) analytical results. In
this section, we first present an overview of data reduction strategies, followed
by a closer look at individual techniques.

3.4.1 Overview of Data Reduction Strategies

Data reduction strategies include dimensionality reduction, numerosity reduc-
tion, and data compression.

Dimensionality reduction is the process of reducing the number of ran-
dom variables or attributes under consideration. Dimensionality reduction meth-
ods include wavelet transforms (Section 3.4.2) and principal components analy-
sis (Section 3.4.3), which transform or project the original data onto a smaller
space. Attribute subset selection is a method of dimensionality reduction in
which irrelevant, weakly relevant, or redundant attributes or dimensions are
detected and removed (Section 3.4.4).

Techniques of numerosity reduction replace the original data volume by
alternative, smaller forms of data representation. These techniques may be para-
metric or nonparametric. For parametric methods, a model is used to estimate
the data, so that typically only the data parameters need to be stored, instead of
the actual data. (Outliers may also be stored.) Regression and log-linear mod-
els (Section 3.4.5) are examples. Nonparametric methods for storing reduced
representations of the data include histograms (Section 3.4.6), clustering (Sec-
tion 3.4.7), sampling (Section 3.4.8), and data cube aggregation (Section 3.4.9).

In data compression, transformations are applied so as to obtain a re-
duced or “compressed” representation of the original data. If the original data
can be reconstructed from the compressed data without any loss of information,



3.4. DATA REDUCTION 21

the data reduction is called lossless. If, instead, we can reconstruct only an ap-
proximation of the original data, then the data reduction is called lossy. There
are several lossless algorithms for string compression, however, they typically
allow only limited manipulation of the data. Dimensionality reduction and nu-
merosity reduction techniques can also be considered forms of data compression.

There are many other ways of organizing methods of data reduction. The
computational time spent on data reduction should not outweigh or “erase” the
time saved by mining on a reduced data set size.

3.4.2 Wavelet Transforms

The discrete wavelet transform (DWT) is a linear signal processing tech-
nique that, when applied to a data vector X, transforms it to a numerically
different vector, X', of wavelet coefficients. The two vectors are of the same
length. When applying this technique to data reduction, we consider each tu-
ple as an n-dimensional data vector, that is, X = (z1,x2,...,2,), depicting n
measurements made on the tuple from n database attributes.?

“How can this technique be useful for data reduction if the wavelet trans-
formed data are of the same length as the original data?” The usefulness lies
in the fact that the wavelet transformed data can be truncated. A compressed
approximation of the data can be retained by storing only a small fraction of
the strongest of the wavelet coefficients. For example, all wavelet coefficients
larger than some user-specified threshold can be retained. All other coefficients
are set to 0. The resulting data representation is therefore very sparse, so that
operations that can take advantage of data sparsity are computationally very
fast if performed in wavelet space. The technique also works to remove noise
without smoothing out the main features of the data, making it effective for data
cleaning as well. Given a set of coefficients, an approximation of the original
data can be constructed by applying the inverse of the DWT used.

The DWT is closely related to the discrete Fourier transform (DFT), a signal
processing technique involving sines and cosines. In general, however, the DWT
achieves better lossy compression. That is, if the same number of coefficients
is retained for a DWT and a DFT of a given data vector, the DWT version
will provide a more accurate approximation of the original data. Hence, for an
equivalent approximation, the DWT requires less space than the DFT. Unlike
the DF'T, wavelets are quite localized in space, contributing to the conservation
of local detail.

There is only one DFT, yet there are several families of DWTs. Figure 3.4
shows some wavelet families. Popular wavelet transforms include the Haar-2,
Daubechies-4, and Daubechies-6 transforms. The general procedure for applying
a discrete wavelet transform uses a hierarchical pyramid algorithm that halves
the data at each iteration, resulting in fast computational speed. The method
is as follows:

3In our notation, any variable representing a vector is shown in bold italic font; measure-
ments depicting the vector are shown in italic font.



22 CHAPTER 3. DATA PREPROCESSING

0.8
0.6
0.6
0404 0.43
0.20, 0.2
0.0
0.0 {——— —
T T T T T T T T T T T
—1.0 —=0.5 00 05 10 15 20 0 2 4 6
(a) Haar-2 (b) Daubechies-4

Figure 3.4: Examples of wavelet families. The number next to a wavelet name is
the number of vanishing moments of the wavelet. This is a set of mathematical
relationships that the coefficients must satisfy and is related to the number of
coefficients.

1. The length, L, of the input data vector must be an integer power of 2. This
condition can be met by padding the data vector with zeros as necessary
(L >n).

2. Each transform involves applying two functions. The first applies some
data smoothing, such as a sum or weighted average. The second performs
a weighted difference, which acts to bring out the detailed features of the
data.

3. The two functions are applied to pairs of data points in X, that is, to
all pairs of measurements (x2;,x2;+1). This results in two sets of data
of length L/2. In general, these represent a smoothed or low-frequency
version of the input data and the high-frequency content of it, respectively.

4. The two functions are recursively applied to the sets of data obtained in
the previous loop, until the resulting data sets obtained are of length 2.

5. Selected values from the data sets obtained in the above iterations are
designated the wavelet coeflicients of the transformed data.

Equivalently, a matrix multiplication can be applied to the input data in
order to obtain the wavelet coefficients, where the matrix used depends on the
given DWT. The matrix must be orthonormal, meaning that the columns are
unit vectors and are mutually orthogonal, so that the matrix inverse is just
its transpose. Although we do not have room to discuss it here, this property
allows the reconstruction of the data from the smooth and smooth-difference
data sets. By factoring the matrix used into a product of a few sparse matrices,
the resulting “fast DWT” algorithm has a complexity of O(n) for an input
vector of length n.

Wavelet transforms can be applied to multidimensional data, such as a data
cube. This is done by first applying the transform to the first dimension, then



3.4. DATA REDUCTION 23

to the second, and so on. The computational complexity involved is linear with
respect to the number of cells in the cube. Wavelet transforms give good results
on sparse or skewed data and on data with ordered attributes. Lossy compression
by wavelets is reportedly better than JPEG compression, the current commercial
standard. Wavelet transforms have many real-world applications, including the
compression of fingerprint images, computer vision, analysis of time-series data,
and data cleaning.

3.4.3 Principal Components Analysis

In this subsection we provide an intuitive introduction to principal components
analysis as a method of dimesionality reduction. A detailed theoretical expla-
nation is beyond the scope of this book. For additional references, please see
the bibliographic notes at the end of this chapter.

Suppose that the data to be reduced consist of tuples or data vectors de-
scribed by mn attributes or dimensions. Principal components analysis, or
PCA (also called the Karhunen-Loeve, or K-L, method), searches for k n-
dimensional orthogonal vectors that can best be used to represent the data,
where k < n. The original data are thus projected onto a much smaller space,
resulting in dimensionality reduction. Unlike attribute subset selection (Sec-
tion 3.4.4), which reduces the attribute set size by retaining a subset of the
initial set of attributes, PCA “combines” the essence of attributes by creating
an alternative, smaller set of variables. The initial data can then be projected
onto this smaller set. PCA often reveals relationships that were not previously
suspected and thereby allows interpretations that would not ordinarily result.

The basic procedure is as follows:

1. The input data are normalized, so that each attribute falls within the same
range. This step helps ensure that attributes with large domains will not
dominate attributes with smaller domains.

2. PCA computes k orthonormal vectors that provide a basis for the nor-
malized input data. These are unit vectors that each point in a direction
perpendicular to the others. These vectors are referred to as the princi-
pal components. The input data are a linear combination of the principal
components.

3. The principal components are sorted in order of decreasing “significance”
or strength. The principal components essentially serve as a new set of
axes for the data, providing important information about variance. That
is, the sorted axes are such that the first axis shows the most variance
among the data, the second axis shows the next highest variance, and so
on. For example, Figure 3.5 shows the first two principal components, Y;
and Yg, for the given set of data originally mapped to the axes X; and
X5. This information helps identify groups or patterns within the data.

4. Because the components are sorted according to the decreasing order of
“significance,” the size of the data can be reduced by eliminating the



24 CHAPTER 3. DATA PREPROCESSING

X5

Y

Figure 3.5: Principal components analysis. Y; and Yo are the first two principal
components for the given data. NOTE: Figure needs to be corrected so that
Y; and Y, are orthogonal.

weaker components, that is, those with low variance. Using the strongest
principal components, it should be possible to reconstruct a good approx-
imation of the original data.

PCA can be applied to ordered and unordered attributes, and can handle
sparse data and skewed data. Multidimensional data of more than two dimen-
sions can be handled by reducing the problem to two dimensions. Principal
components may be used as inputs to multiple regression and cluster analysis.
In comparison with wavelet transforms, PCA tends to be better at handling
sparse data, whereas wavelet transforms are more suitable for data of high
dimensionality.

3.4.4 Attribute Subset Selection

Data sets for analysis may contain hundreds of attributes, many of which may
be irrelevant to the mining task or redundant. For example, If the task is to
classify customers based on a probability of positive reaction on a discount offer
of a music CD, attributes such as the customer’s telephone number are likely
to be irrelevant, unlike attributes such as age or music_taste. Although it may
be possible for a domain expert to pick out some of the useful attributes, this
can be a difficult and time-consuming task, especially when the behavior of
the data is not well known (hence, a reason behind its analysis!). Leaving out
relevant attributes or keeping irrelevant attributes may be detrimental, causing
confusion for the mining algorithm employed. This can result in discovered pat-
terns of poor quality. In addition, the added volume of irrelevant or redundant
attributes can slow down the mining process.

Attribute subset selection® reduces the data set size by removing irrel-
evant or redundant attributes (or dimensions). The goal of attribute subset
selection is to find a minimum set of attributes such that the resulting prob-
ability distribution of the data classes is as close as possible to the original
distribution obtained using all attributes. Mining on a reduced set of attributes

4In machine learning, attribute subset selection is known as feature subset selection.



3.4. DATA REDUCTION 25

Forward selection Backward elimination Decision tree induction

Initial attribute set:0 Initial Ettribute set:O0 Initial attribute set:00
{A1, Ay, Az, Ay, As, AgYI{A |, Ay, Az, Ay, As, AGHTI{A |, Ay, Az, Ay, As, Agh

[m| [m]
Initial reduced set:00 =>{A|, A3, Ay, A5, Ag)O
{0 =>{A, A4, As, Ag}O
={A;}0 => Reduced attribute set:
=>{A;, A0 {41, A4, Ag}O
=> Reduced attribute set:[T1

{A1, Ay, Ag}O

=> Reduced attribute set:0
{A1, Ay, AgO

|-}

Figure 3.6: Greedy (heuristic) methods for attribute subset selection.

has an additional benefit. It reduces the number of attributes appearing in the
discovered patterns, helping to make the patterns easier to understand.

“How can we find a ‘good’ subset of the original attributes?” For n attributes,
there are 2™ possible subsets. An exhaustive search for the optimal subset of
attributes can be prohibitively expensive, especially as n and the number of data
classes increase. Therefore, heuristic methods that explore a reduced search
space are commonly used for attribute subset selection. These methods are
typically greedy in that, while searching through attribute space, they always
make what looks to be the best choice at the time. Their strategy is to make
a locally optimal choice in the hope that this will lead to a globally optimal
solution. Such greedy methods are effective in practice and may come close to
estimating an optimal solution.

The “best” (and “worst”) attributes are typically determined using tests of
statistical significance, which assume that the attributes are independent of one
another. Many other attribute evaluation measures can be used, such as the
information gain measure used in building decision trees for classification.®

Basic heuristic methods of attribute subset selection include the following
techniques, some of which are illustrated in Figure 3.6.

1. Stepwise forward selection: The procedure starts with an empty set
of attributes as the reduced set. The best of the original attributes is
determined and added to the reduced set. At each subsequent iteration
or step, the best of the remaining original attributes is added to the set.

2. Stepwise backward elimination: The procedure starts with the full
set of attributes. At each step, it removes the worst attribute remaining
in the set.

5The information gain measure is described in detail in Chapter 8.



26 CHAPTER 3. DATA PREPROCESSING

3. Combination of forward selection and backward elimination: The
stepwise forward selection and backward elimination methods can be com-
bined so that, at each step, the procedure selects the best attribute and
removes the worst from among the remaining attributes.

4. Decision tree induction: Decision tree algorithms, such as ID3, C4.5,
and CART, were originally intended for classification. Decision tree in-
duction constructs a flowchart-like structure where each internal (nonleaf)
node denotes a test on an attribute, each branch corresponds to an out-
come of the test, and each external (leaf) node denotes a class prediction.
At each node, the algorithm chooses the “best” attribute to partition the
data into individual classes.

When decision tree induction is used for attribute subset selection, a tree
is constructed from the given data. All attributes that do not appear in the
tree are assumed to be irrelevant. The set of attributes appearing in the tree
form the reduced subset of attributes.

The stopping criteria for the methods may vary. The procedure may em-
ploy a threshold on the measure used to determine when to stop the attribute
selection process.

In some cases, we may want to create new attributes based on others. Such
attribute construction® can help improve accuracy and understanding of
structure in high-dimensional data. For example, we may wish to add the at-
tribute area based on the attributes height and width. By combining attributes,
attribute construction can discover missing information about the relationships
between data attributes that can be useful for knowledge discovery.

3.4.5 Regression and Log-Linear Models: Parametric Data
Reduction

Regression and log-linear models can be used to approximate the given data.
In (simple) linear regression, the data are modeled to fit a straight line. For
example, a random variable, y (called a response variable), can be modeled as a
linear function of another random variable, z (called a predictor variable), with

the equation
y=wx + b, (3.7)

where the variance of y is assumed to be constant. In the context of data
mining, x and y are numeric database attributes. The coefficients, w and b
(called regression coefficients), specify the slope of the line and the Y-intercept,
respectively. These coefficients can be solved for by the method of least squares,
which minimizes the error between the actual line separating the data and the
estimate of the line. Multiple linear regression is an extension of (simple)
linear regression, which allows a response variable, y, to be modeled as a linear
function of two or more predictor variables.

6In the machine learning literature, attribute construction is known as feature construction.



3.4. DATA REDUCTION 27

Log-linear models approximate discrete multidimensional probability dis-
tributions. Given a set of tuples in n dimensions (e.g., described by n at-
tributes), we can consider each tuple as a point in an n-dimensional space.
Log-linear models can be used to estimate the probability of each point in a
multidimensional space for a set of discretized attributes, based on a smaller
subset of dimensional combinations. This allows a higher-dimensional data
space to be constructed from lower-dimensional spaces. Log-linear models are
therefore also useful for dimensionality reduction (since the lower-dimensional
points together typically occupy less space than the original data points) and
data smoothing (since aggregate estimates in the lower-dimensional space are
less subject to sampling variations than the estimates in the higher-dimensional
space).

Regression and log-linear models can both be used on sparse data, although
their application may be limited. While both methods can handle skewed data,
regression does exceptionally well. Regression can be computationally intensive
when applied to high-dimensional data, whereas log-linear models show good
scalability for up to 10 or so dimensions.

Several software packages exist to solve regression problems. Examples in-
clude SAS (www.sas.com), SPSS (www.spss.com), and S-Plus (www.insightful.com).
Another useful resource is the book Numerical Recipes in C, by Press, Flannery,
Teukolsky, and Vetterling, and its associated source code.

3.4.6 Histograms

Histograms use binning to approximate data distributions and are a popu-
lar form of data reduction. Histograms were introduced in Section 2.2.9. A
histogram for an attribute, A, partitions the data distribution of A into dis-
joint subsets, or buckets. If each bucket represents only a single attribute-
value/frequency pair, the buckets are called singleton buckets. Often, buckets
instead represent continuous ranges for the given attribute.

Example 3.3 Histograms. The following data are a list of prices of commonly sold items at
AllFElectronics (rounded to the nearest dollar). The numbers have been sorted:
1,1,5,5,5,5,5,8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 18,
18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25,
25, 25, 28, 28, 30, 30, 30.

Figure 3.7 shows a histogram for the data using singleton buckets. To further
reduce the data, it is common to have each bucket denote a continuous range of
values for the given attribute. In Figure 3.8, each bucket represents a different
$10 range for price.

“How are the buckets determined and the attribute values partitioned?” There
are several partitioning rules, including the following;:

e Equal-width: In an equal-width histogram, the width of each bucket
range is uniform (such as the width of $10 for the buckets in Figure 3.8).



28 CHAPTER 3. DATA PREPROCESSING

count
[9) ]
L
|
|

oA LA AT 1

5 10 15 20 25 30
price ($)

\ 4

Figure 3.7: A histogram for price using singleton buckets—each bucket repre-
sents one price-value/ frequency pair.

e Equal-frequency (or equidepth): In an equal-frequency histogram, the
buckets are created so that, roughly, the frequency of each bucket is con-
stant (that is, each bucket contains roughly the same number of contiguous
data samples).

Histograms are highly effective at approximating both sparse and dense data,
as well as highly skewed and uniform data. The histograms described above
for single attributes can be extended for multiple attributes. Multidimensional
histograms can capture dependencies between attributes. Such histograms have
been found effective in approximating data with up to five attributes. More
studies are needed regarding the effectiveness of multidimensional histograms
for high dimensionalities.

Singleton buckets are useful for storing outliers with high frequency.

3.4.7 Clustering

Clustering techniques consider data tuples as objects. They partition the objects
into groups or clusters, so that objects within a cluster are “similar” to one
another and “dissimilar” to objects in other clusters. Similarity is commonly
defined in terms of how “close” the objects are in space, based on a distance
function. The “quality” of a cluster may be represented by its diameter, the
maximum distance between any two objects in the cluster. Centroid distance is
an alternative measure of cluster quality and is defined as the average distance



3.4. DATA REDUCTION 29

0 T T I
1-10 11-20 21-30

price ($)

\

Figure 3.8: An equal-width histogram for price, where values are aggregated so
that each bucket has a uniform width of $10.

of each cluster object from the cluster centroid (denoting the “average object,”
or average point in space for the cluster). Figure 3.3 of Section 3.2.2 shows a
2-D plot of customer data with respect to customer locations in a city, where
the centroid of each cluster is shown with a “+”. Three data clusters are visible.

In data reduction, the cluster representations of the data are used to replace
the actual data. The effectiveness of this technique depends on the nature of
the data. It is much more effective for data that can be organized into distinct
clusters than for smeared data.

There are many measures for defining clusters and cluster quality. Clustering
methods are further described in Chapters 10 and 11.

3.4.8 Sampling

Sampling can be used as a data reduction technique because it allows a large
data set to be represented by a much smaller random sample (or subset) of the
data. Suppose that a large data set, D, contains N tuples. Let’s look at the
most common ways that we could sample D for data reduction, as illustrated
in Figure 3.9.

e Simple random sample without replacement (SRSWOR) of size
s: This is created by drawing s of the N tuples from D (s < N), where
the probability of drawing any tuple in D is 1/N, that is, all tuples are
equally likely to be sampled.

e Simple random sample with replacement (SRSWR) of size s:
This is similar to SRSWOR, except that each time a tuple is drawn from
D, it is recorded and then replaced. That is, after a tuple is drawn, it is
placed back in D so that it may be drawn again.



30

T1
T2
T3

T100

CHAPTER 3. DATA PREPROCESSING

T1 SRSWOR  T5
T2 b=h m
T3 T8
T4 Te6
T5 SRSWR
T6 s=4) M
T7
T T4
T8
TI

Cluster sample
(s=2)

T701

T201

— T202

— T203

T300

Stratified sample
(according to age)

T38 youth T38 youth
T256 youth T391 youth
T307 youth T117 middle_aged
T391 youth T138 middle_aged
T96 middle_aged T290 middle_aged
T117 middle_aged T326 middle_aged
T138 middle_aged T69 senior

T263 middle_aged
T290 middle_aged
T308 middle_aged
T326 middle_aged
T387 middle_aged
T69 senior

T284 senior

Figure 3.9: Sampling can be used for data reduction.

e Cluster sample: If the tuples in D are grouped into M mutually disjoint

“clusters,” then an SRS of s clusters can be obtained, where s < M. For
example, tuples in a database are usually retrieved a page at a time, so that
each page can be considered a cluster. A reduced data representation can
be obtained by applying, say, SRSWOR to the pages, resulting in a cluster
sample of the tuples. Other clustering criteria conveying rich semantics
can also be explored. For example, in a spatial database, we may choose
to define clusters geographically based on how closely different areas are
located.

Stratified sample: If D is divided into mutually disjoint parts called
strata, a stratified sample of D is generated by obtaining an SRS at each



3.4. DATA REDUCTION 31

stratum. This helps ensure a representative sample, especially when the
data are skewed. For example, a stratified sample may be obtained from
customer data, where a stratum is created for each customer age group.
In this way, the age group having the smallest number of customers will
be sure to be represented.

An advantage of sampling for data reduction is that the cost of obtaining a
sample is proportional to the size of the sample, s, as opposed to N, the data set
size. Hence, sampling complexity is potentially sublinear to the size of the data.
Other data reduction techniques can require at least one complete pass through
D. For a fixed sample size, sampling complexity increases only linearly as the
number of data dimensions, n, increases, whereas techniques using histograms,
for example, increase exponentially in n.

When applied to data reduction, sampling is most commonly used to esti-
mate the answer to an aggregate query. It is possible (using the central limit
theorem) to determine a sufficient sample size for estimating a given function
within a specified degree of error. This sample size, s, may be extremely small
in comparison to N. Sampling is a natural choice for the progressive refinement
of a reduced data set. Such a set can be further refined by simply increasing
the sample size.

3.4.9 Data Cube Aggregation

Imagine that you have collected the data for your analysis. These data consist
of the AllElectronics sales per quarter, for the years 2008 to 2010. You are,
however, interested in the annual sales (total per year), rather than the total per
quarter. Thus the data can be aggregated so that the resulting data summarize
the total sales per year instead of per quarter. This aggregation is illustrated
in Figure 3.10. The resulting data set is smaller in volume, without loss of
information necessary for the analysis task.

Data cubes are discussed in detail in Chapter 4 on data warehousing and
Chapter 5 on advanced data cube technology. We briefly introduce some con-
cepts here. Data cubes store multidimensional aggregated information. For
example, Figure 3.11 shows a data cube for multidimensional analysis of sales
data with respect to annual sales per item type for each AllElectronics branch.
Each cell holds an aggregate data value, corresponding to the data point in
multidimensional space. (For readability, only some cell values are shown.)
Concept hierarchies may exist for each attribute, allowing the analysis of data
at multiple levels of abstraction. For example, a hierarchy for branch could
allow branches to be grouped into regions, based on their address. Data cubes
provide fast access to precomputed, summarized data, thereby benefiting on-
line analytical processing as well as data mining.

The cube created at the lowest level of abstraction is referred to as the base
cuboid. The base cuboid should correspond to an individual entity of interest,
such as sales or customer. In other words, the lowest level should be usable, or
useful for the analysis. A cube at the highest level of abstraction is the apex



32 CHAPTER 3. DATA PREPROCESSING

Year 2004
QOuartor | Saleg
Year 2003
| P or
Year 2002 O_EE
Quarter | Sales |00

QIO $224,000[E] 20020 $1,568,0000
Q20 | $408,0001 — | 20030 $2,356,0000
Q30 | $350,0001 2004 | $3,594,000

Q4 | $586,000

Tt

=t

Tt

Year Sales

=

Figure 3.10: Sales data for a given branch of AllElectronics for the years 2002
to 2004. On the left, the sales are shown per quarter. On the right, the data
are aggregated to provide the annual sales. NOTE TO EDITOR: Please update
figure by replacing years 2002, 2003, 2004 with 2008, 2009, 2010, respectively.
Thanks.

cuboid. For the sales data of Figure 3.11, the apex cuboid would give one total—
the total sales for all three years, for all item types, and for all branches. Data
cubes created for varying levels of abstraction are often referred to as cuboids,
so that a data cube may instead refer to a lattice of cuboids. Each higher level
of abstraction further reduces the resulting data size. When replying to data
mining requests, the smallest available cuboid relevant to the given task should
be used. This issue is also addressed in Chapter 4.

3.5 Data Transformation and Data Discretiza-
tion

This section presents methods of data transformation. In this preprocessing
step, the data are transformed or consolidated so that the resulting mining pro-
cess may be more efficient, and the patterns found may be easier to understand.
Data discretization, a form of data transformation, is also discussed.

3.5.1 Overview of Data Transformation Strategies

In data transformation, the data are transformed or consolidated into forms
appropriate for mining. Strategies for data transformation include the following:

1. Smoothing, which works to remove noise from the data. Such techniques
include binning, regression, and clustering.

2. Attribute construction (or feature construction), where new attributes
are constructed and added from the given set of attributes to help the
mining process.



3.5. DATA TRANSFORMATION AND DATA DISCRETIZATION 33

D
&
e
B

A

homeO
entertainment

o

568

computer | 750

phone 150

item type

security 50

2002 2003 2004

year

Figure 3.11: A data cube for sales at AllFElectronics. NOTE TO EDITOR:
Please update figure by replacing years 2002, 2003, 2004 with 2008, 2009, 2010,
respectively. Thanks.

3. Aggregation, where summary or aggregation operations are applied to
the data. For example, the daily sales data may be aggregated so as to
compute monthly and annual total amounts. This step is typically used
in constructing a data cube for analysis of the data at multiple levels of
abstraction.

4. Normalization, where the attribute data are scaled so as to fall within
a smaller range, such as —1.0 to 1.0, or 0.0 to 1.0.

5. Discretization, where the raw values of a numeric attribute (such as age)
are replaced by interval labels (e.g., 0-10, 11-20, and so on) or conceptual
labels (e.g., youth, adult, and senior). The labels, in turn, can be recur-
sively organized into higher-level concepts, resulting in a concept hierarchy

($0...$1000]

[ ($0..A$200]q [ ($200A..$400]ql [($400.4.$600]q] [ ($6004..$800]q] [($800A..$1000]q1

($0..0
$100]

Figure 3.12: A concept hierarchy for the attribute price, where an interval
(3X ...8Y] denotes the range from $X (exclusive) to $Y (inclusive).

$200] $300]0| $400] $500]0| $600] $700100| $800] $900]10 | $1000

($1oo..lj: [(sszoo... ($300... [($4oo... ($500... [($600... ($700... [($8OOA.. ($900...$
]




34 CHAPTER 3. DATA PREPROCESSING

for the numeric attribute. Figure 3.12 shows a concept hierarchy for the
attribute price. More than one concept hierarchy can be defined for the
same attribute in order to accommodate the needs of various users.

6. Concept hierarchy generation for nominal data, where attributes
such as street can be generalized to higher-level concepts, like city or
country. Many hierarchies for nominal attributes are implicit within the
database schema and can be automatically defined at the schema definition
level.

Recall that there is much overlap between the major data preprocessing
tasks. The first three of the above strategies were discussed earlier in this chap-
ter. Smoothing is a form of data cleaning and was addressed in Section 3.2.2.
Section 3.2.3 on the data cleaning process also discussed ETL tools, where users
specify transformations to correct data inconsistencies. Attribute construction
and aggregation were discussed in Section 3.4 on data reduction. In this section,
we therefore concentrate on the latter three strategies.

Discretization techniques can be categorized based on how the discretiza-
tion is performed, such as whether it uses class information or which direction
it proceeds (i.e., top-down vs. bottom-up). If the discretization process uses
class information, then we say it is supervised discretization. Otherwise, it is
unsupervised. If the process starts by first finding one or a few points (called
split points or cut points) to split the entire attribute range, and then repeats
this recursively on the resulting intervals, it is called top-down discretization or
splitting. This contrasts with bottom-up discretization or merging, which starts
by considering all of the continuous values as potential split-points, removes
some by merging neighborhood values to form intervals, and then recursively
applies this process to the resulting intervals.

Data discretization and concept hierarchy generation are also forms of data
reduction. The raw data are replaced by a smaller number of interval or concept
labels. This simplifies the original data and makes the mining more efficient.
The resulting patterns mined are typically easier to understand. Concept hier-
archies are also useful for mining at multiple levels of abstraction.

The rest of this section is organized as follows. First, normalization tech-
niques are presented in Section 3.5.2. We then describe several techniques for
data discretization, each of which can be used to generate concept hierarchies for
numeric attributes. The techniques include binning (Section 3.5.3), histogram
analysis (Section 3.5.4), as well as cluster analysis, decision-tree analysis, and
correlation analysis (Section 3.5.5). Finally, Section 3.5.6 describes the auto-
matic generation of concept hierarchies for nominal data.

3.5.2 Data Transformation by Normalization

The measurement unit used can affect the data analysis. For example, changing
measurement units from meters to inches for height, or from kilograms to pounds
for weight, may lead to very different results. In general, expressing an attribute



3.5. DATA TRANSFORMATION AND DATA DISCRETIZATION 35

in smaller units will lead to a larger range for that attribute, and thus tend to
give such an attribute greater effect or “weight”. To help avoid dependence on
the choice of measurement units, the data should be normalized or standardized.
This involves transforming the data to fall within a smaller or common range,
such as [—1, 1] or [0.0,1.0]. (The terms “standardize” and “normalize” are used
interchangeably in data preprocessing, although in statistics, the latter term
also has other connotations.)

Normalizing the data attempts to give all attributes an equal weight. Nor-
malization is particularly useful for classification algorithms involving neural
networks, or distance measurements such as nearest-neighbor classification and
clustering. If using the neural network backpropagation algorithm for classi-
fication mining (Chapter 8), normalizing the input values for each attribute
measured in the training tuples will help speed up the learning phase. For
distance-based methods, normalization helps prevent attributes with initially
large ranges (e.g., income) from outweighing attributes with initially smaller
ranges (e.g., binary attributes). It is also useful when given no prior knowledge
of the data.

There are many methods for data normalization. We study min-maz normal-
ization, z-score normalization, and normalization by decimal scaling. For our
discussion, let A be a numeric attribute with n observed values, vy, vs, ..., vy.

Min-max normalization performs a linear transformation on the original
data. Suppose that mina and max4 are the minimum and maximum values
of an attribute, A. Min-max normalization maps a value, v;, of A to v} in the
range [new_mina, new_max 4] by computing

Vi = M(new_maxA — new-mina) + new-miny. (3.8)
maxrs — ming

Min-max normalization preserves the relationships among the original data
values. It will encounter an “out-of-bounds” error if a future input case for
normalization falls outside of the original data range for A.

Example 3.4 Min-max normalization. Suppose that the minimum and maximum values
for the attribute income are $12,000 and $98,000, respectively. We would like
to map income to the range [0.0,1.0]. By min-max normalization, a value of

, . 73,600—12,000 _
$73,600 for income is transformed to gg'g50—15°500 (1.0 — 0) + 0 = 0.716.
In z-score normalization (or zero-mean normalization), the values for an
attribute, A, are normalized based on the mean (i.e., average) and standard
deviation of A. A value, v;, of A is normalized to v} by computing

v = =, (3.9)
oA

where A and o4 are the mean and standard deviation, respectively, of attribute
A. The mean and standard deviation were discussed in Section 2.2 of this book,
where A = %(vl + vy + -4 v,) and o4 is computed as the square root of the



36 CHAPTER 3. DATA PREPROCESSING

variance of A (see Equation (2.6)). This method of normalization is useful when
the actual minimum and maximum of attribute A are unknown, or when there
are outliers that dominate the min-max normalization.

Example 3.5 z-score Normalization Suppose that the mean and standard deviation of the
values for the attribute income are $54,000 and $16,000, respectively. With z-
score normalization, a value of $73,600 for income is transformed to W =
1.225. ’

A variation of the above z-score normalization replaces the standard devia-
tion of Equation 3.9 by the mean absolute deviation of A. The mean absolute
deviation of A, denoted s4, is:

1 _ _ _

Thus, z-score normalization using the mean absolute deviation is:

o= iz A (3.11)
SA

The mean absolute deviation, s4, is more robust to outliers than the standard
deviation, 4. When computing the mean absolute deviation, the deviations
from the mean (i.e., |x; — Z|) are not squared; hence, the effect of outliers is
somewhat reduced.

Normalization by decimal scaling normalizes by moving the decimal
point of values of attribute A. The number of decimal points moved depends
on the maximum absolute value of A. A value, v;, of A is normalized to v} by
computing ) s
Vi = 107 (3.12)
where j is the smallest integer such that Maz(|v}]) < 1.

Example 3.6 Decimal scaling. Suppose that the recorded values of A range from —986 to
917. The maximum absolute value of A is 986. To normalize by decimal scaling,
we therefore divide each value by 1,000 (i.e., j = 3) so that —986 normalizes to
—0.986 and 917 normalizes to 0.917.

Note that normalization can change the original data quite a bit, especially
when using z-score normalization or decimal scaling. It is also necessary to
save the normalization parameters (such as the mean and standard deviation if
using z-score normalization) so that future data can be normalized in a uniform
manner.

3.5.3 Discretization by Binning

Binning is a top-down splitting technique based on a specified number of bins.
Section 3.2.2 discussed binning methods for data smoothing. These methods



3.5. DATA TRANSFORMATION AND DATA DISCRETIZATION 37

are also used as discretization methods for data reduction and concept hierar-
chy generation. For example, attribute values can be discretized by applying
equal-width or equal-frequency binning, and then replacing each bin value by
the bin mean or median, as in smoothing by bin means or smoothing by bin me-
dians, respectively. These techniques can be applied recursively to the resulting
partitions in order to generate concept hierarchies.

Binning does not use class information and is therefore an unsupervised
discretization technique. It is sensitive to the user-specified number of bins, as
well as the presence of outliers.

3.5.4 Discretization by Histogram Analysis

Like binning, histogram analysis is an unsupervised discretization technique
because it does not use class information. Histograms were introduced in Sec-
tion 2.2.9. A histogram partitions the values of an attribute, A, into disjoint
ranges called buckets.

Various partitioning rules can be used to define histograms (Section 3.4.6).
In an equal-width histogram, for example, the values are partitioned into equal-
sized partitions or ranges (such as in Figure 3.8 for price, where each bucket has
a width of $10). With an equal-frequency histogram, the values are partitioned
so that, ideally, each partition contains the same number of data tuples. The
histogram analysis algorithm can be applied recursively to each partition in or-
der to automatically generate a multilevel concept hierarchy, with the procedure
terminating once a prespecified number of concept levels has been reached. A
minimum interval size can also be used per level to control the recursive proce-
dure. This specifies the minimum width of a partition, or the minimum number
of values for each partition at each level. Histograms can also be partitioned
based on cluster analysis of the data distribution, as described below.

3.5.5 Discretization by Cluster, Decision Tree, and Cor-
relation Analyses

Clustering, decision tree analysis, and correlation analysis can be used for data
discretization. We briefly study each of these approaches.

Cluster analysis is a popular data discretization method. A clustering algo-
rithm can be applied to discretize a numeric attribute, A, by partitioning the
values of A into clusters or groups. Clustering takes the distribution of A into
consideration, as well as the closeness of data points, and therefore is able to
produce high-quality discretization results.

Clustering can be used to generate a concept hierarchy for A by following
either a top-down splitting strategy or a bottom-up merging strategy, where
each cluster forms a node of the concept hierarchy. In the former, each initial
cluster or partition may be further decomposed into several subclusters, forming
a lower level of the hierarchy. In the latter, clusters are formed by repeatedly
grouping neighboring clusters in order to form higher-level concepts. Clustering
methods for data mining are studied in Chapters 10 and 11.



38 CHAPTER 3. DATA PREPROCESSING

Techniques to generate decision trees for classification (Chapter 8) can be ap-
plied to discretization. Such techniques employ a top-down splitting approach.
Unlike the other methods mentioned so far, decision tree approaches to dis-
cretization are supervised, that is, they make use of class label information. For
example, we may have a data set of patient symptoms (the attributes), where
each patient has an associated diagnosis class label. Class distribution infor-
mation is used in the calculation and determination of split-points (data values
for partitioning an attribute range). Intuitively, the main idea is to select split-
points so that a given resulting partition contains as many tuples of the same
class as possible. Entropy is the most commonly used measure for this purpose.
To discretize a numeric attribute, A, the method selects the value of A that has
the minimum entropy as a split-point, and recursively partitions the resulting
intervals to arrive at a hierarchical discretization. Such discretization forms a
concept hierarchy for A.

Because decision-tree-based discretization uses class information, it is more
likely that the interval boundaries (split-points) are defined to occur in places
that may help improve classification accuracy. Decision trees and the entropy
measure are described in greater detail in Section 8.3.2.

Measures of correlation can be used for discretization. ChiMerge is a x2-
based discretization method. The discretization methods that we have studied
up to this point have all employed a top-down, splitting strategy. This contrasts
with ChiMerge, which employs a bottom-up approach by finding the best neigh-
boring intervals and then merging these to form larger intervals, recursively. As
with decision tree analysis, ChiMerge is supervised in that it uses class infor-
mation. The basic notion is that for accurate discretization, the relative class
frequencies should be fairly consistent within an interval. Therefore, if two ad-
jacent intervals have a very similar distribution of classes, then the intervals can
be merged. Otherwise, they should remain separate.

ChiMerge proceeds as follows. Initially, each distinct value of a numeric
attribute A is considered to be one interval. x? tests are performed for every
pair of adjacent intervals. Adjacent intervals with the least y? values are merged
together, because low x2? values for a pair indicate similar class distributions.
This merging process proceeds recursively until a predefined stopping criterion
is met.

3.5.6 Concept Hierarchy Generation for Nominal Data

We now look at data transformation for nominal data. In particular, we study
the generation of concept hierarchies for nominal attributes. Nominal attributes
have a finite (but possibly large) number of distinct values, with no ordering
among the values. Examples include geographic location, job category, and item
type.

Manual definition of concept hierarchies can be a tedious and time-consuming
task for a user or a domain expert. Fortunately, many hierarchies are implicit
within the database schema and can be automatically defined at the schema
definition level. The concept hierarchies can be used to transform the data into



3.5. DATA TRANSFORMATION AND DATA DISCRETIZATION 39

multiple levels of granularity. For example, data mining patterns regarding sales
may be found relating to specific regions or countries, in addition to individual
branch locations.

We study four methods for the generation of concept hierarchies for nominal
data.

1. Specification of a partial ordering of attributes explicitly at the
schema level by users or experts: Concept hierarchies for nominal
attributes or dimensions typically involve a group of attributes. A user
or an expert can easily define a concept hierarchy by specifying a partial
or total ordering of the attributes at the schema level. For example, sup-
pose that a relational database contains the following group of attributes:
street, city, province_or_state, and country. Similarly, a location dimension
of a data warehouse may contain the same attributes. A hierarchy can
be defined by specifying the total ordering among these attributes at the
schema level, such as street < city < province_or_state < country.

2. Specification of a portion of a hierarchy by explicit data grouping;:
This is essentially the manual definition of a portion of a concept hier-
archy. In a large database, it is unrealistic to define an entire concept
hierarchy by explicit value enumeration. On the contrary, we can easily
specify explicit groupings for a small portion of intermediate-level data.
For example, after specifying that province and country form a hierarchy
at the schema level, a user could define some intermediate levels man-
ually, such as “{Alberta, Saskatchewan, Manitoba} C prairies-Canada”
and “{British Columbia, prairies-Canada} C Western_Canada”.

3. Specification of a set of attributes, but not of their partial order-
ing: A user may specify a set of attributes forming a concept hierarchy,
but omit to explicitly state their partial ordering. The system can then
try to automatically generate the attribute ordering so as to construct a
meaningful concept hierarchy.

“Without knowledge of data semantics, how can a hierarchical ordering for
an arbitrary set of nominal attributes be found?” Consider the following
observation that since higher-level concepts generally cover several subor-
dinate lower-level concepts, an attribute defining a high concept level (e.g.,
country) will usually contain a smaller number of distinct values than an
attribute defining a lower concept level (e.g., street). Based on this obser-
vation, a concept hierarchy can be automatically generated based on the
number of distinct values per attribute in the given attribute set. The
attribute with the most distinct values is placed at the lowest level of
the hierarchy. The lower the number of distinct values an attribute has,
the higher it is in the generated concept hierarchy. This heuristic rule
works well in many cases. Some local-level swapping or adjustments may
be applied by users or experts, when necessary, after examination of the
generated hierarchy.



CHAPTER 3. DATA PREPROCESSING

country 15 distinct values

.

province_or_state 365 distinct values

city 3,567 distinct values

VAV

street 674,339 distinct values

g

Figure 3.13: Automatic generation of a schema concept hierarchy based on the
number of distinct attribute values.

Let’s examine an example of this third method.

Example 3.7 Concept hierarchy generation based on the number of distinct values
per attribute. Suppose a user selects a set of location-oriented attributes,
street, country, province_or_state, and city, from the AllFlectronics database,
but does not specify the hierarchical ordering among the attributes.

A concept hierarchy for location can be generated automatically, as illus-
trated in Figure 3.13. First, sort the attributes in ascending order based on
the number of distinct values in each attribute. This results in the following
(where the number of distinct values per attribute is shown in parentheses):
country (15), province_or_state (365), city (3567), and street (674,339). Sec-
ond, generate the hierarchy from the top down according to the sorted order,
with the first attribute at the top level and the last attribute at the bottom
level. Finally, the user can examine the generated hierarchy, and when neces-
sary, modify it to reflect desired semantic relationships among the attributes.
In this example, it is obvious that there is no need to modify the generated
hierarchy.

Note that this heuristic rule is not foolproof. For example, a time dimension
in a database may contain 20 distinct years, 12 distinct months, and 7 distinct
days of the week. However, this does not suggest that the time hierarchy should
be “year < month < days_of-the_week”, with days_of the_week at the top of the
hierarchy.

4. Specification of only a partial set of attributes: Sometimes a user can
be careless when defining a hierarchy, or have only a vague idea about



3.6. SUMMARY 41

what should be included in a hierarchy. Consequently, the user may have
included only a small subset of the relevant attributes in the hierarchy
specification. For example, instead of including all of the hierarchically
relevant attributes for location, the user may have specified only street
and city. To handle such partially specified hierarchies, it is important
to embed data semantics in the database schema so that attributes with
tight semantic connections can be pinned together. In this way, the speci-
fication of one attribute may trigger a whole group of semantically tightly
linked attributes to be “dragged in” to form a complete hierarchy. Users,
however, should have the option to override this feature, as necessary.

Example 3.8 Concept hierarchy generation using prespecified semantic connections.
Suppose that a data mining expert (serving as an administrator) has pinned
together the five attributes number, street, city, province_or_state, and country,
because they are closely linked semantically regarding the notion of location. If
a user were to specify only the attribute city for a hierarchy defining location,
the system can automatically drag in all of the above five semantically related
attributes to form a hierarchy. The user may choose to drop any of these
attributes, such as number and street, from the hierarchy, keeping city as the
lowest conceptual level in the hierarchy.

In summary, information at the schema level and of attribute-value counts
can be used to generate concept hierarchies for nominal data. Transforming
nominal data with the use of concept hierarchies allows higher-level knowledge
patterns to be found. It allows mining at multiple levels of abstraction, which
is a common requirement for data mining applications.

3.6 Summary

e Data quality is defined in terms of accuracy, completeness, consistency,
timeliness, believability, and interpretabilty. These qualities are assessed
based on the intended use of the data.

e Data cleaning routines attempt to fill in missing values, smooth out noise
while identifying outliers, and correct inconsistencies in the data. Data
cleaning is usually performed as an iterative two-step process consisting
of discrepancy detection and data transformation.

e Data integration combines data from multiple sources to form a co-
herent data store. The resolution of semantic heterogeneity, metadata,
correlation analysis, tuple duplication detection, and data conflict detec-
tion contribute toward smooth data integration.

e Data reduction techniques obtain a reduced representation of the data
while minimizing the loss of information content. These include methods
of dimensionality reduction, numerosity reduction, and data compression.
Dimensionality reduction reduces the number of random variables or



42

CHAPTER 3. DATA PREPROCESSING

attributes under consideration. Methods include wavelet transforms, prin-
cipal components analysis, attribute subset selection, and attribute cre-
ation. Numerosity reduction methods use parametric or nonparatmet-
ric models to obtain smaller representations of the original data. Para-
metric models store only the model parameters instead of the actual data.
Examples include regression and log-linear models. Nonparamteric meth-
ods include histograms, clustering, sampling, and data cube aggregation.
Data compression methods apply transformations to obtain a reduced
or “compressed” representation of the original data. The data reduction
is lossless if the original data can be reconstructed from the compressed
data without any loss of information; otherwise, it is lossy.

Data transformation routines convert the data into appropriate forms
for mining. For example, in normalization, attribute data are scaled so
as to fall within a small range such as 0.0 to 1.0. Other examples are data
discretization and concept hierarchy generation.

Data discretization transforms numeric data by mapping values to in-
terval or concept labels. Such methods can be used to automatically gen-
erate concept hierarchies for the data, which allows for mining at multiple
levels of granularity. Discretization techniques include binning, histogram
analysis, cluster analysis, decision-tree analysis, and correlation analy-
sis. For nominal data, concept hierarchies may be generated based on
schema definitions as well as the number of distinct values per attribute.

Although numerous methods of data preprocessing have been developed,
data preprocessing remains an active area of research, due to the huge
amount of inconsistent or dirty data and the complexity of the problem.

3.7 Exercises

1. Data quality can be assessed in terms of several issues, including accuracy,

completeness, and consistency. For each of the above three issues, discuss
how the assessment of data quality can depend on the intended use of the
data, giving examples Propose two other dimensions of data quality.

. In real-world data, tuples with missing values for some attributes are a

common occurrence. Describe various methods for handling this problem.

. Exercise 2.2 gave the following data (in increasing order) for the attribute

age: 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35,
35, 35, 35, 36, 40, 45, 46, 52, 70.

(a) Use smoothing by bin means to smooth the above data, using a bin
depth of 3. Illustrate your steps. Comment on the effect of this
technique for the given data.

(b) How might you determine outliers in the data?



3.7. EXERCISES 43

(¢) What other methods are there for data smoothing?

4. Discuss issues to consider during data integration.
5. What are the value ranges of the following normalization methods?

(a) min-max normalization
(b) z-score normalization

(¢) z-score normalization using the mean absolute deviation instead of
standard deviation

(d) normalization by decimal scaling

6. Use the methods below to normalize the following group of data:
200, 300, 400, 600, 1000

(a) min-max normalization by setting min = 0 and maz = 1
(b) z-score normalization

(¢c) z-score normalization using the mean absolute deviation instead of
standard deviation

(d) normalization by decimal scaling
7. Using the data for age given in Exercise 3.3, answer the following:

(a) Use min-max normalization to transform the value 35 for age onto

the range [0.0, 1.0].

(b) Use z-score normalization to transform the value 35 for age, where
the standard deviation of age is 12.94 years.

(¢) Use normalization by decimal scaling to transform the value 35 for
age.

(d) Comment on which method you would prefer to use for the given
data, giving reasons as to why.

8. Using the data for age and body fat given in Exercise 2.4, answer the
following:

(a) Normalize the two attributes based on z-score normalization.

(b) Calculate the correlation coefficient (Pearson’s product moment coef-
ficient). Are these two attributes positively or negatively correlated?
Compute their covariance.

9. Suppose a group of 12 sales price records has been sorted as follows:

5,10,11, 13,15, 35, 50, 55, 72,92, 204, 215.
Partition them into three bins by each of the following methods.



44 CHAPTER 3. DATA PREPROCESSING

(a) equal-frequency (equidepth) partitioning
(b) equal-width partitioning

(c) clustering

10. Use a flowchart to summarize the following procedures for attribute subset
selection:

(a) stepwise forward selection
(b) stepwise backward elimination

(¢) a combination of forward selection and backward elimination
11. Using the data for age given in Exercise 3.3,

(a) Plot an equal-width histogram of width 10.

(b) Sketch examples of each of the following sampling techniques: SR-
SWOR, SRSWR, cluster sampling, stratified sampling. Use samples
of size 5 and the strata “youth”, “middle-aged”, and “senior”.

12. ChiMerge [Ker92] is a supervised, bottom-up (i.e., merge-based) data dis-
cretization method. It relies on x2 analysis: adjacent intervals with the
least x? values are merged together till the chosen stopping criterion sat-
isfies.

(a) Briefly describe how ChiMerge works.

(b) Take the IRIS data set, obtained from the UC-Irvine Machine Learn-
ing Data Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html),
as a data set to be discretized. Perform data discretization for each
of the four numerical attributes using the ChiMerge method. (Let
the stopping criteria be: maz-interval = 6). You need to write a
small program to do this to avoid clumsy numerical computation.
Submit your simple analysis and your test results: split points, final
intervals, and your documented source program.

13. Propose an algorithm, in pseudocode or in your favorite programming
language, for the following;:

(a) The automatic generation of a concept hierarchy for categorical data
based on the number of distinct values of attributes in the given
schema

(b) The automatic generation of a concept hierarchy for numerical data
based on the equal-width partitioning rule

(¢) The automatic generation of a concept hierarchy for numerical data
based on the equal-frequency partitioning rule



3.8. BIBLIOGRAPHIC NOTES 45

14. Robust data loading poses a challenge in database systems because the in-
put data are often dirty. In many cases, an input record may miss multiple
values, some records could be contaminated, with some data values out of
range or of a different data type than expected. Work out an automated
data cleaning and loading algorithm so that the erroneous data will be
marked, and contaminated data will not be mistakenly inserted into the
database during data loading.

3.8 Bibliographic Notes

Data preprocessing is discussed in a number of textbooks, including English
[Eng99], Pyle [Pyl99], Loshin [Los01], Redman [Red01], and Dasu and Johnson
[DJO03]. More specific references to individual preprocessing techniques are given
below.

For discussion regarding data quality, see Redman [Red92], Wang, Storey,
and Firth [WSF95], Wand and Wang [WW96], Ballou and Tayi [BT99], and
Olson [O1s03]. Potter’s Wheel (control.cx.berkely.edu/abc), the interac-
tive data cleaning tool described in Section 3.2.3, is presented in Raman and
Hellerstein [RHO1]. An example of the development of declarative languages for
the specification of data transformation operators is given in Galhardas et al.
[GFS*01]. The handling of missing attribute values is discussed in Friedman
[Fri77], Breiman, Friedman, Olshen, and Stone [BFOS84], and Quinlan [Qui89).
Hua and Pei [HP07] presented a heuristic approach to clean disguised miss-
ing data, where such data is captured when users falsely select default values
on forms (such as ‘January 1’ for birthdate) when they do not want to dis-
close personal information. A method for the detection of outlier or “garbage”
patterns in a handwritten character database is given in Guyon, Matic, and
Vapnik [GMV96]. Binning and data normalization are treated in many texts,
including [KLV198], [WI98], [Pyl99]. Systems that include attribute (or fea-
ture) construction include BACON by Langley, Simon, Bradshaw, and Zytkow
[LSBZ8&7], Stagger by Schlimmer [Sch86], FRINGE by Pagallo [Pag89], and
AQ17-DCI by Bloedorn and Michalski [BM98]. Attribute construction is also
described in Liu and Motoda [LM98, Le98]. Dasu, et al. built a BELLMAN
system and proposed a set of interesting methods for building a data quality
browser by mining database structures [DJMS02].

A good survey of data reduction techniques can be found in Barbard et
al. [BDF197]. For algorithms on data cubes and their precomputation, see
[SS94, AADT96, HRU96, RS97, ZDN97|. Attribute subset selection (or feature
subset selection) is described in many texts, such as Neter, Kutner, Nacht-
sheim, and Wasserman [NKNWO96], Dash and Liu [DL97], and Liu and Motoda
[LM98, LM98b]. A combination forward selection and backward elimination
method was proposed in Siedlecki and Sklansky [SS88]. A wrapper approach
to attribute selection is described in Kohavi and John [KJ97]. Unsupervised
attribute subset selection is described in Dash, Liu, and Yao [DLY97]. For
a description of wavelets for dimensionality reduction, see Press, Teukolosky,



46 CHAPTER 3. DATA PREPROCESSING

Vetterling, and Flannery [PTVF96]. A general account of wavelets can be
found in Hubbard [Hub96]. For a list of wavelet software packages, see Bruce,
Donoho, and Gao [BDG96]. Daubechies transforms are described in Daubechies
[Dau92]. The book by Press, et al. [PTVF96] includes an introduction to
singular value decomposition for principal components analysis. Routines for
PCA are included in most statistical software packages, such as SAS (http:
//www.sas.com/SASHome.html).

An introduction to regression and log-linear models can be found in several
textbooks, such as [Jam85, Dob90, JW92, Dev95, NKNW96]. For log-linear
models (known as rultiplicative models in the computer science literature),
see Pearl [Pea88]. For a general introduction to histograms, see Barbard et
al. [BDF197] and Devore and Peck [DP97]. For extensions of single attribute
histograms to multiple attributes, see Muralikrishna and DeWitt [MD88] and
Poosala and Ioannidis [PI97]. Several references to clustering algorithms are
given in Chapter 7 of this book, which is devoted to the topic. A survey of
multidimensional indexing structures is given in Gaede and Giinther [GG9S|.
The use of multidimensional index trees for data aggregation is discussed in Aoki
[Aok98]. Index trees include R-trees (Guttman [Gut84]), quad-trees (Finkel
and Bentley [FB74]), and their variations. For discussion on sampling and data
mining, see Kivinen and Mannila [KM94] and John and Langley [JL96].

There are many methods for assessing attribute relevance. Each has its own
bias. The information gain measure is biased towards attributes with many
values. Many alternatives have been proposed, such as gain ratio (Quinlan
[Qui93]), which considers the probability of each attribute value. Other rele-
vance measures include the gini index (Breiman, Friedman, Olshen, and Stone
[BFOS84]), the x? contingency table statistic, and the uncertainty coefficient
(Johnson and Wichern [JW92]). For a comparison of attribute selection mea-
sures for decision tree induction, see Buntine and Niblett [BN92]. For additional
methods, see Liu and Motoda [LM98]b, Dash and Liu [DL97], and Almuallim
and Dietterich [AD91].

Liu et al. [LHTDO02] performed a comprehensive survey of data discretiza-
tion methods. Entropy-based discretization with the C4.5 algorithm is described
in Quinlan [Qui93]. In Catlett [Cat91], the D-2 system binarizes a numerical
feature recursively. ChiMerge by Kerber [Ker92] and Chi2 by Liu and Setiono
[LS95] are methods for the automatic discretization of numerical attributes that
both employ the y? statistic. Fayyad and Irani [FI93] apply the minimum de-
scription length principle to determine the number of intervals for numerical
discretization. Concept hierarchies and their automatic generation from cate-
gorical data are described in Han and Fu [HF94].



Bibliography

[AAD*96]

[ADO1]

[Aok9g]

[BDF+97]

[BDGY6]

[BFOS84]

[BMOS]

[BN92]

[BT99]

[Cat91]

S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F.
Naughton, R. Ramakrishnan, and S. Sarawagi. On the computa-
tion of multidimensional aggregates. In Proc. 1996 Int. Conf. Very
Large Data Bases (VLDB’96), pages 506-521, Bombay, India, Sept.
1996.

H. Almuallim and T. G. Dietterich. Learning with many irrelevant
features. In Proc. 1991 Nat. Conf. Artificial Intelligence (AAAI’91),
pages 547-552, Anaheim, CA, July 1991.

P. M. Aoki. Generalizing “search” in generalized search trees. In
Proc. 1998 Int. Conf. Data Engineering (ICDE’98), pages 380-389,
Orlando, FL, Feb. 1998.

D. Barbara, W. DuMouchel, C. Faloutos, P. J. Haas, J. H. Heller-
stein, Y. Ioannidis, H. V. Jagadish, T. Johnson, R. Ng, V. Poosala,
K. A. Ross, and K. C. Servcik. The New Jersey data reduction
report. Bull. Technical Committee on Data Engineering, 20:3-45,
Dec. 1997.

A. Bruce, D. Donoho, and H.-Y. Gao. Wavelet analysis. In IEEFE
Spectrum, pages 26-35, Oct 1996.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Wadsworth International Group, 1984.

A. Blum and T. Mitchell. Combining labeled and unlabeled data
with co-training. In Proc. 11th Conf. on Computational Learning
Theory (COLT’ 98), pages 92-100, Madison, WI, 1998.

W. L. Buntine and T. Niblett. A further comparison of splitting
rules for decision-tree induction. Machine Learning, 8:75-85, 1992.

D. P. Ballou and G. K. Tayi. Enhancing data quality in data ware-
house environments. Comm. ACM, 42:73-78, 1999.

J. Catlett. Megainduction: Machine Learning on Very large
Databases. Ph.D. Thesis, University of Sydney, 1991.

47



48

[Dau92)

[Dev95]

[DJO3]

[DIMS02]

[DL97]

[DLY97]

[Dob90)

[DPY7]

[Eng99]

[FB74]

[F193]

[Fri77]

[GFS*01]

[GGOS]

BIBLIOGRAPHY

I. Daubechies. Ten Lectures on Wavelets. Capital City Press, 1992.

J. L. Devore. Probability and Statistics for Engineering and the
Science (4th ed.). Duxbury Press, 1995.

T. Dasu and T. Johnson. Ezxploratory Data Mining and Data Clean-
ing. John Wiley & Sons, 2003.

T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Min-
ing database structure; or how to build a data quality browser.
In Proc. 2002 ACM-SIGMOD Int. Conf. on Management of Data
(SIGMOD’02), pages 240-251, Madison, WI, June 2002.

M. Dash and H. Liu. Feature selection methods for classification.
Intelligent Data Analysis, 1:131-156, 1997.

M. Dash, H. Liu, and J. Yao. Dimensionality reduction of unsu-
pervised data. In Proc. 1997 IEEE Int. Conf. Tools with AI (IC-
TAI’97), pages 532-539, IEEE Computer Society, 1997.

A. J. Dobson. An Introduction to Generalized Linear Models. Chap-
man and Hall, 1990.

J. Devore and R. Peck. Statistics: The Exploration and Analysis of
Data. Duxbury Press, 1997.

L. English. Improving Data Warehouse and Business Information
Quality: Methods for Reducing Costs and Increasing Profits. John
Wiley & Sons, 1999.

R. A. Finkel and J. L. Bentley. Quad-trees: A data structure for
retrieval on composite keys. ACTA Informatica, 4:1-9, 1974.

U. Fayyad and K. Irani. Multi-interval discretization of continuous-
values attributes for classification learning. In Proc. 1993 Int. Joint
Conf. Artificial Intelligence (IJCAI’93), pages 1022-1029, Cham-
bery, France, 1993.

J. H. Friedman. A recursive partitioning decision rule for nonpara-
metric classifiers. IEEE Trans. Computer, 26:404-408, 1977.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita.
Declarative data cleaning: Language, model, and algorithms. In
Proc. 2001 Int. Conf. on Very Large Data Bases (VLDB’01), pages
371-380, Rome, Italy, Sept. 2001.

V. Gaede and O. Guinther. Multidimensional access methods. ACM
Comput. Surv., 30:170-231, 1998.



BIBLIOGRAPHY 49

[GMV96]

[Gut84]

[HF94]

[HP07]

[HRUY6]

[Hub96]

[Jam85]

[JL.96]

[TW92]

[Ker92]

[KJ97]

[KLV+98]

[KMO4]

I. Guyon, N. Matic, and V. Vapnik. Discoverying informative pat-
terns and data cleaning. In U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Dis-
covery and Data Mining, pages 181-203. AAAI/MIT Press, 1996.

A. Guttman. R-tree: A dynamic index structure for spatial search-
ing. In Proc. 1984 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’8}), pages 47-57, Boston, MA, June 1984.

J. Han and Y. Fu. Dynamic generation and refinement of con-
cept hierarchies for knowledge discovery in databases. In Proc.
AAAI94 Workshop Knowledge Discovery in Databases (KDD’94),
pages 157-168, Seattle, WA, July 1994.

M. Hua and J. Pei. Cleaning disguised missing data: A heuristic
approach. In Proc. 2007 ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining (KDD’07), San Jose, CA, Aug. 2007.

V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing
data cubes efficiently. In Proc. 1996 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’96), pages 205-216, Montreal,
Canada, June 1996.

B. B. Hubbard. The World According to Wavelets. A. K. Peters,
1996.

M. James. Classification Algorithms. John Wiley & Sons, 1985.

G. H. John and P. Langley. Static versus dynamic sampling for
data mining. In Proc. 1996 Int. Conf. Knowledge Discovery and
Data Mining (KDD’96), pages 367370, Portland, OR, Aug. 1996.

R. A. Johnson and D. A. Wichern. Applied Multivariate Statistical
Analysis (3rd ed.). Prentice Hall, 1992.

R. Kerber. Discretization of numeric attributes. In Proc. 1992 Nat.
Conf. Artificial Intelligence (AAAI’92), pages 123-128, AAAT/MIT
Press, 1992.

R. Kohavi and G. H. John. Wrappers for feature subset selection.
Artificial Intelligence, 97:273-324, 1997.

R. L Kennedy, Y. Lee, B. Van Roy, C. D. Reed, and R. P. Lipp-
man. Solving Data Mining Problems Through Pattern Recognition.
Prentice Hall, 1998.

J. Kivinen and H. Mannila. The power of sampling in knowledge
discovery. In Proc. 158th ACM Symp. Principles of Database Sys-
tems, pages 77-85, Minneapolis, MN, May 1994.



50

[Le98]

[LHTDO2]

[LMOYS]

[Los01]

[LS95]

[LSBZ87]

[MDS8S]

[NKNW96)

[01s03]

[Pag89]

[Pead8)

[P197]

[PTVF96)

[Pyl99]

BIBLIOGRAPHY

H. Liu and H. Motoda (eds.). Feature Ezxtraction, Construction, and
Selection: A Data Mining Perspective. Kluwer Academic, 1998.

H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: An
enabling technique. Data Mining and Knowledge Discovery, 6:393—
423, 2002.

H. Liu and H. Motoda. Feature Selection for Knowledge Discovery
and Data Mining. Kluwer Academic, 1998.

D. Loshin. Enterprise Knowledge Management: The Data Quality
Approach. Morgan Kaufmann, 2001.

H. Liu and R. Setiono. Chi2: Feature selection and discretization
of numeric attributes. In Proc. 1995 IEEE Int. Conf. Tools with Al
(ICTAI’95), pages 388-391, Washington, DC, Nov. 1995.

P. Langley, H. A. Simon, G. L. Bradshaw, and J. M. Zytkow. Sci-
entific Discovery: Computational Ezxplorations of the Creative Pro-
cesses. MIT Press, 1987.

M. Muralikrishna and D. J. DeWitt. Equi-depth histograms for
extimating selectivity factors for multi-dimensional queries. In
Proc. 1988 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’88), pages 28-36, Chicago, IL, June 1988.

J. Neter, M. H. Kutner, C. J. Nachtsheim, and L. Wasserman.
Applied Linear Statistical Models (4th ed.). Irwin, 1996.

J. E. Olson. Data Quality: The Accuracy Dimension. Morgan
Kaufmann, 2003.

G. Pagallo. Learning DNF by decision trees. In Proc. 1989 Int.
Joint Conf. Artificial Intelligence (IJCAI'89), pages 639-644, Mor-
gan Kaufmann, 1989.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan
Kauffman, 1988.

V. Poosala and Y. lIoannidis. Selectivity estimation without the
attribute value independence assumption. In Proc. 1997 Int. Conf.
Very Large Data Bases (VLDB’97), pages 486-495, Athens, Greece,
Aug. 1997.

W. H. Press, S. A. Teukolosky, W. T. Vetterling, and B. P. Flan-
nery. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, 1996.

D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann,
1999.



BIBLIOGRAPHY 51

[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81—
106, 1986.

[Qui89] J. R. Quinlan. Unknown attribute values in induction. In Proc. 1989
Int. Conf. Machine Learning (ICML’89), pages 164-168, Tthaca,
NY, June 1989.

[Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[Red92] T. Redman. Data Quality: Management and Technology. Bantam
Books, 1992.

[Red01] T. Redman. Data Quality: The Field Guide. Digital Press (Else-
vier), 2001.

[RHO1] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive
data cleaning system. In Proc. 2001 Int. Conf. on Very Large Data
Bases (VLDB’01), pages 381-390, Rome, Italy, Sept. 2001.

[RS97] K. Ross and D. Srivastava. Fast computation of sparse datacubes.
In Proc. 1997 Int. Conf. Very Large Data Bases (VLDB’97), pages
116-125, Athens, Greece, Aug. 1997.

[Sch86] J. C. Schlimmer. Learning and representation change. In Proc.
1986 Nat. Conf. Artificial Intelligence (AAAI’86), pages 511-515,
Philadelphia, PA, 1986.

[SS88] W. Siedlecki and J. Sklansky. On automatic feature selection. Int.
J. Pattern Recognition and Artificial Intelligence, 2:197-220, 1988.

[SS94] S. Sarawagi and M. Stonebraker. Efficient organization of large
multidimensional arrays. In Proc. 1994 Int. Conf. Data Engineering
(ICDE’94), pages 328-336, Houston, TX, Feb. 1994.

[WI98] S. M. Weiss and N. Indurkhya. Predictive Data Mining. Morgan
Kaufmann, 1998.

[WSF95] R. Wang, V. Storey, and C. Firth. A framework for analysis of data
quality research. IEFEFE Trans. Knowledge and Data Engineering,
7:623-640, 1995.

[WW96] Y. Wand and R. Wang. Anchoring data quality dimensions in on-
tological foundations. Comm. ACM, 39:86-95, 1996.

[ZDN97] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-
based algorithm for simultaneous multidimensional aggregates. In
Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’97), pages 159-170, Tucson, AZ, May 1997.



